

Common Platform 1

Enumeration: Dictionary 2

Specification Version 2.3 3

(DRAFT) 4

 5

Paul Cichonski 6

David Waltermire7

NIST Interagency Report 7697
(DRAFT)

 8

9 10
Common Platform Enumeration:
Dictionary Specification Version 2.3
(DRAFT)

Paul Cichonski
David Waltermire

C O M P U T E R S E C U R I T Y
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

August 2010

U.S. Department of Commerce

Gary Locke, Secretary

National Institute of Standards and Technology

Dr. Patrick D. Gallagher, Director

NIST Interagency Report 7697
(DRAFT)

 ii

Reports on Computer Systems Technology 11
 12

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 13
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s 14
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 15
concept implementations, and technical analysis to advance the development and productive use of 16
information technology. ITL’s responsibilities include the development of technical, physical, 17
administrative, and management standards and guidelines for the cost-effective security and privacy of 18
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s 19
research, guidance, and outreach efforts in computer security and its collaborative activities with industry, 20
government, and academic organizations. 21

 22

 23

 24
 25
 26

 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

43

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report 7697 (DRAFT)
61 pages (August 2010)

 iii

Acknowledgments 44

The authors, Paul Cichonski of Booz Allen Hamilton and David Waltermire of NIST wish to thank their 45
colleagues who reviewed drafts of this document and contributed to its technical content. The authors 46
would like to acknowledge Harold Booth of NIST, Chris McCormick of Booz Allen Hamilton, Seth 47
Hanford of Cisco Systems, Inc., Tim Keanini of nCircle, Kent Landfield of McAfee, Inc., Brant A. 48
Cheikes and Mary Parmelee of the MITRE Corporation, Jim Ronayne of Cobham plc, and Shane Shaffer 49
of G2, Inc. for their insights and support throughout the development of the document. 50

Abstract 51

This report defines the concept of a Common Platform Enumeration (CPE) Dictionary, the rules 52
associated with CPE Dictionary creation and management, and the data model for representing a CPE 53
Dictionary. The CPE Dictionary Specification is a part of a stack of CPE specifications that serves to 54
support a variety of use cases relating to IT product description and naming. An individual CPE 55
Dictionary is a repository of IT product names, with each name in the repository identifying a unique 56
class of IT product in the world. This specification defines the semantics of the CPE Dictionary data 57
model. This common semantics provides a shared understanding, of CPE Dictionary constructs, to users 58
from different communities of practice. This specification also defines the methodology for capturing 59
official IT product names through an Official CPE Dictionary construct. 60

Audience 61

This specification document defines standardized data models and machine encodings for creating 62
product descriptions and identifiers. These models and encodings are envisaged to be of interest to the 63
following audiences: 64

a. Asset inventory tool developers. Asset inventory tools inspect computing devices and assemble 65
catalogs that list installed component hardware and software elements. In the absence of CPE, 66
there is no standardized method for how these tools should report what they find. The CPE 67
specification stack provides all the technical elements needed to comprise such a capability. 68
Furthermore, CPE is intended to address the needs of asset inventory tool developers regardless 69
of whether the tools have credentialed (authenticated) access to the computing devices subject to 70
inventory. 71

b. Security content automation tool developers. Many security content automation tools are 72
fundamentally concerned with making fully- or partially-automated information system security 73
decisions based on collected information about installed products. The CPE specification stack 74
provides a framework that supports correlation of information about identical products installed 75
across the enterprise, and association of vulnerability, configuration, remediation and other 76
security-policy information with information about installed products. 77

c. Security content authors. Security content authors are concerned with creating machine-78
interpretable documents that define organizational policies and procedures pertaining to 79
information systems security, management and enforcement. Often there is a need to tag 80
guidance, policy, etc., documents with information about the product(s) to which the guidance, 81
policy, etc., applies. These tags are called applicability statements. The CPE specification stack 82
provides a standardized mechanism for creating applicability statements which can be used to 83
ensure that guidance is invoked as needed when the product(s) to which it applies is discovered to 84
be installed within an enterprise. 85

86

 iv

Table of Contents 87

Executive Summary ... 0 88

1. Introduction .. 2 89

1.1 Purpose and Scope ... 2 90
1.2 Normative References ... 2 91
1.3 Document Structure .. 3 92
1.4 Document Conventions ... 3 93

2. Terms, Definitions and Abbreviations .. 5 94

2.1 Terms and Definitions.. 5 95
2.1.1 Dictionary Contributor ... 5 96
2.1.2 Dictionary Creator ... 5 97
2.1.3 Dictionary Maintainer .. 5 98
2.1.4 Dictionary Users .. 5 99
2.1.5 CPE Specification Stack .. 5 100
2.1.6 Extended CPE Dictionary .. 5 101
2.1.7 Identification Strategy .. 5 102
2.1.8 Identifier WFN ... 5 103
2.1.9 Known Data .. 6 104
2.1.10 Official CPE Dictionary .. 6 105
2.1.11 Official Identifier WFN ... 6 106

2.2 Abbreviated Terms .. 6 107

3. Conformance .. 7 108

3.1 Product Conformance.. 7 109
3.2 Organization Conformance .. 7 110

4. Relationship to Existing Standards .. 9 111

4.1 Relationship to CPE Specification Stack.. 9 112
4.2 Relationship to CPE v2.2 ... 9 113

5. Rules and Acceptance Criteria ...10 114

5.1 Acceptance Criteria ... 10 115
5.1.1 Permitted Concepts and Special Characters ..10 116
5.1.2 Restricted Concepts and Special Characters ...11 117
5.1.3 CPE Name Completeness - Required CPE Attributes12 118
5.1.4 CPE Name Uniqueness ...12 119

5.2 CPE Dictionary Deprecation Process .. 13 120
5.2.1 Deprecation Types ...14 121
5.2.2 Performing Deprecation ...15 122
5.2.3 Use of Deprecated Names ...16 123

5.3 CPE Dictionary Provenance Data .. 17 124

6. CPE Dictionary Searching ..18 125

6.1 Identifier Lookup .. 18 126
6.2 Dictionary Searching ... 18 127

7. Management Documents ..20 128

7.1 Dictionary Content Management and Decisions Document 20 129

 v

7.2 Dictionary Process Management Document .. 21 130

8. Official and Extended Dictionaries...22 131

8.1 Official CPE Dictionary .. 22 132
8.2 Extended CPE Dictionaries ... 22 133

9. Data Model Overview ..24 134

9.1 Mandatory Elements ... 24 135
9.2 Optional Elements ... 28 136
9.3 Extension Points .. 30 137

10. Implementation and Binding ..31 138

10.1 CPE Dictionary Pseudo Code .. 31 139
10.1.1 Operations on a CPE Dictionary ...31 140
10.1.2 Acceptance Criteria Pseudo Code ...32 141
10.1.3 Dictionary Searching Pseudo Code ..34 142

10.2 CPE Dictionary Binding ... 37 143

Appendix A— Use Cases..39 144

Appendix B— Identification Strategies ...40 145

Appendix C— Valid CPE Dictionary Data Model Bindings ...41 146

Appendix D— Change Log ...53 147

 148

List of Figures 149

Figure ES-1: CPE Specification Stack 150 .. 0

Figure 10-1: accept-name function 151 ..32

Figure 10-2: contains-restricted-characters function 152 ..33

Figure 10-3: contains-required-attributes function 153 ...33

Figure 10-4: dictionary-search function 154 ...36

Figure 10-5: findSupersetMatches function 155 ...36

Figure 10-6: findSubsetMatches function 156 ..37

Figure 10-7: findExactMatch function 157 ..37

Figure 10-8: CPE 2.2 Schema 158 ..47

Figure 10-9: CPE 2.3 Extension of 2.2 Schema 159 ..50

Figure 10-10: Sample CPE 2.3 Dictionary Instance Data 160 ..52

 161

List of Tables 162

Table 10-1: Description of dictionary-search function 163 ..34

Table 10-2: Description of findSupersetMatch function 164 ...36

 vi

Table 10-3: Description of findSubsetMatch function 165 ...36

Table 10-4: Description of findExactMatch function 166 ...37

 167

 168

 0

Executive Summary 169

Following security best practices is essential to maintaining the security and integrity of today's 170
Information Technology (IT) systems and the data they store. Given the speed with which attackers 171
discover and exploit new vulnerabilities, best practices need to be continuously refined and updated as 172
fast as or faster than the attackers can operate. To this end, security automation has emerged as an 173
advanced computer-security technology intended to help information system administrators assess, 174
manage and maintain the security posture of their IT infrastructures regardless of their enterprises’ scale, 175
organization and structure. The United States government, under the auspices of the National Institute of 176
Standards and Technology (NIST), has established the Security Content Automation Protocol (SCAP) to 177
foster the development and adoption of security automation standards and data resources.1

 179
 178

The Common Platform Enumeration (CPE) addresses the security automation community’s need for a 180
standardized method to identify and describe the software systems and hardware devices present in an 181
enterprise’s computing asset inventory. Four specification documents comprise the CPE stack: 182

1. Naming 183
2. Matching 184
3. Dictionary 185
4. Language 186

The Naming specification defines the logical structure of well-formed CPE names (WFNs), and the 187
procedures for binding and unbinding WFNs to and from machine-readable encodings. The Name 188
Matching specification defines the procedures for comparing WFNs to determine whether they refer to 189
some or all of the same products or platforms. The Dictionary specification—this document—defines the 190
concept of a dictionary of identifier WFNs, and prescribes high-level rules for dictionary curators. The 191
Language specification defines a standardized structure for forming complex logical expressions out of 192
WFNs. These four specifications are arranged in a specification stack as depicted in Figure ES-1. 193

 194
Figure ES-1: CPE Specification Stack 195

Collectively, the CPE Specification Stack aims to deliver these capabilities to the security automation 196
community: 197

• A method for assigning unique machine-readable identifiers to certain classes of IT products and 198
computing platforms; 199

• A method for curating (compiling and maintaining) dictionaries (repositories) of machine-200
readable product and platform identifiers; 201

• A method for constructing machine-readable referring expressions which can be mechanically 202
compared (i.e., by a computer algorithm or procedure) to product/platform identifiers to 203
determine whether the identifiers satisfy the expressions; 204

1 For more information on SCAP, cf. NIST Special Publication 800-117, Guide to Adopting and Using the Security Content
Automation Protocol, http://csrc.nist.gov/publications/drafts/800-117/draft-sp800-117.pdf.

 1

• A set of interoperability requirements which guarantee that heterogeneous security automation 205
tools can select and use the same unique identifiers to refer to the associated products and 206
platforms. 207

 2

1. Introduction 208

1.1 Purpose and Scope 209

This document defines the policies associated with creating a Common Platform Enumeration (CPE) 210
Dictionary. A CPE dictionary is a repository of CPE Names that identify an individual product; the 211
dictionary stores both the enumeration of these CPE Names as well as metadata associated with the CPE 212
Names. This document formally defines the concept of a CPE dictionary, the formal rules relating to 213
dictionary instantiation and management, and the data model that represents all dictionary concepts and 214
relationships. This document also establishes the concept of an Official CPE Dictionary, as well as the 215
process for how organization can extend the Official CPE Dictionary using Extended CPE Dictionaries. 216
 217
A CPE dictionary is a repository of CPE Names, where each name in the dictionary identifies a single 218
class of IT product in the world. The word ‘class’ here signifies that the object identified is not a physical 219
instantiation of a product on a system, but rather the abstract model of that product. In addition to using a 220
CPE name to identify a single product class, organizations may also use CPE names to represent a set of 221
multiple product classes. This is a very important distinction, and one must understand that a CPE 222
dictionary stores only CPE Names that identify a single product class, not a set of product classes. 223
 224
The scope of this document is limited to formally defining the CPE dictionary concept as well as rules 225
associated with dictionary instantiation and management. This document does not include normative 226
guidance relating to other components of the CPE stack such as CPE Names, CPE matching algorithms, 227
or CPE language structure. 228
 229

1.2 Normative References 230

The following documents are indispensible references for understanding the application of this 231
specification. 232
 233
[CPE22] Buttner, A. and N. Ziring. (2009). Common Platform Enumeration—Specification. Version 2.2 234
dated 11 March 2009. See: http://cpe.mitre.org/specification/spec_archive.html. 235
 236
[CPE23-N] Cheikes, B. A. and Waltermire, D. (2010). Common Platform Enumeration: Naming 237
Specification Version 2.3. 238
 239
 [CPE23-M] Parmelee, M. C., Booth, H. and Waltermire, D. (2010). Common Platform Enumeration: 240
Name Matching Specification Version 2.3 241
 242
[ISO19770-2] ISO/IEC 19770-2. (2009). Software Identification Tag. November 2009. See: 243
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53670. 244
 245
[SCAP800-117] NIST Special Publication 800-117, Guide to Adopting and Using the Security Content 246
Automation Protocol. See: http://csrc.nist.gov/publications/drafts/800-117/draft-sp800-117.pdf. 247
 248
[TUCA] Common Platform Enumeration (CPE) Technical Use Case Analysis. White Paper, The 249
MITRE Corporation, November 2008. See: http://cpe.mitre.org/about/use_cases.html. 250
 251

 3

1.3 Document Structure 252

The remainder of this document is organized into the following major sections: 253

• Section 2 defines the terms used within this specification, and provides a list of common 254
abbreviations. 255

• Section 3 defines the conformance rules for this specification. 256

• Section 4 provides an overview of related specifications or standards. 257

• Section 5 defines the high-level rules and acceptance criteria relating to a CPE dictionary. 258

• Section 6 defines the valid searching operations relating to a CPE Dictionary. 259

• Section 7 defines the required management documents relating to a CPE dictionary. 260

• Section 8 provides an overview of the Official and Extended CPE Dictionary concepts. 261

• Section 9 defines the CPE dictionary data model. 262

• Section 10 provides pseudo code that implements the various concepts defined in other sections 263
of the specification. This section also defines the requirements for valid bindings of the CPE 264
dictionary data model. 265

The document also contains appendices with informative reference material. 266

• Appendix A provides potential use cases relating to this specification. 267

• Appendix B provides an example of the disparate Identification Strategies for IT products. 268

• Appendix C provides a listing of valid bindings for the CPE dictionary data model. 269

• Appendix D provides a change-log that documents the changes made during public review 270
period. 271

1.4 Document Conventions 272

This specification adheres to all rules and conventions defined lower in the CPE stack of specifications. 273
The CPE Naming Specification [CPE23-N]defines the concept of a Well-Formed CPE Name (WFN) that 274
is a logical representation of a CPE name. Wherever possible, this specification uses WFN representation 275
of CPE names to limit the dependency on any concrete form of CPE name binding. 276

The CPE Naming Specification [CPE23-N:1.2.1] defines two primary uses of a WFN. The first use case 277
for a WFN is to describe a set of product classes in existence. The second use case for a WFN is to define 278
a single, unique, product class in existence. A CPE Dictionary is a collection of WFNs supporting the 279
second use case, in other words all non-deprecated WFNs within a CPE dictionary uniquely identify a 280
single product class. This specification will always use of the term identifier WFN to represent a WFN 281
that is uniquely identifying a single product class. 282

Text intended to represent computing system input, output, or algorithmic processing is presented in 283
fixed-width Courier font. 284

 4

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, 285
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 286
interpreted as described in Request for Comment (RFC) 2119.2

2 RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”, is available at

 287

http://www.ietf.org/rfc/rfc2119.txt.

http://www.ietf.org/rfc/rfc2119.txt�

 5

2. Terms, Definitions and Abbreviations 288

2.1 Terms and Definitions 289

This section defines a set of common terms used within the document. This section builds on the terms 290
defined in CPE Naming Specification [CPE23-N] and CPE Matching specification [CPE23-M] and does 291
not repeat them here. 292

2.1.1 Dictionary Contributor 293

Any organization or person that submits new CPE Names to the dictionary for inclusion. 294

2.1.2 Dictionary Creator 295

A dictionary creator is any organization that instantiates a CPE dictionary that conforms to the guidance 296
within this specification. 297

2.1.3 Dictionary Maintainer 298

A Dictionary Maintainer is any organization that manages a CPE dictionary and all processes relating to 299
that CPE dictionary. In the majority of cases, the organization that serves as the dictionary creator will 300
also serve as the Dictionary Maintainer for a specific CPE dictionary. 301

2.1.4 Dictionary Users 302

Any organization, individual, or software product that consumes a CPE dictionary for any purpose. 303

2.1.5 CPE Specification Stack 304

The CPE Specification Stack is the set of all specifications that make up CPE 2.3. At the time of writing 305
this specification, the set includes The Common Platform Enumeration: Naming Specification Version 306
2.3, The Common Platform Enumeration: Name Matching Specification Version 2.3, The Common 307
Platform Enumeration: Dictionary Specification Version 2.3, and The Common Platform Enumeration: 308
Language Specification Version 2.3 309

2.1.6 Extended CPE Dictionary 310

An Extended CPE dictionary is a dictionary that an organization may stand up to house identifier WFNs 311
not found in the Official CPE Dictionary. Section 8.2 defines this concept fully. 312

2.1.7 Identification Strategy 313

An identification strategy is the way in which a particular product is versioned, or named. More 314
specifically this includes the way the product is versioned, the syntax of a version string for a product, and 315
the semantics implied by that version string. Appendix B— expands upon this definition in detail. 316

2.1.8 Identifier WFN 317

A logical representation of a CPE that is uniquely identifying a single product class. 318

 6

2.1.9 Known Data 319

Known Data is a term used to describe one category of information that may be present within an attribute 320
of a CPE Name. Known Data represents any meaningful value about a product (e.g. sp1, 2.3.4, pro, NA), 321
but does not include values such as ANY. 322
 323

2.1.10 Official CPE Dictionary 324

The Official CPE Dictionary is the authoritative repository of identifier WFNs hosted by NIST. Section 325
8.1 defines this concept fully. 326

2.1.11 Official Identifier WFN 327

Any logical representation of a CPE that uniquely identifies a single product class and is contained within 328
the Official CPE Dictionary. 329

2.2 Abbreviated Terms 330

CPE Common Platform Enumeration 331
IT Information Technology 332
NIST National Institute of Standards and Technology 333
SCAP Security Content Automation Protocol 334
WFN Well-formed CPE Name 335
URI Uniform Resource Identifier 336

 7

3. Conformance 337

Products and organizations may want to claim conformance with this specification for a variety of 338
reasons. For example, a product may want to assert that it uses official identifier WFNs internally and 339
can interoperate with any other product using official identifier WFNs. Another example may be that a 340
policy mandates that organizations use CPE to track and identify products on their systems. 341

This section provides the high-level requirements that a product or organization must meet if they are 342
seeking conformance with this specification. The majority of the requirements listed in this section 343
reference other sections in this document that fully define the high-level requirement. 344

3.1 Product Conformance 345

This section contains the set of requirements for IT products asserting conformance with The CPE 2.3 346
Dictionary Specification. Products may claim conformance with this specification to show that the 347
product uses identifier WFNs internally and can interoperate with other products using identifier WFNs. 348
All products claiming conformance with this specification MUST adhere to the following requirements: 349

1. Products using identifier WFNs SHOULD only use official identifier WFNs that are located in 350
the Official CPE Dictionary; if an official identifier WFN is not available, the tool MUST use an 351
identifier WFN contained within an Extended CPE dictionary to which it has access. 352

2. When a product consumes or outputs an identifier WFN, then that product MUST first determine 353
if the identifier WFN is deprecated in the Official CPE Dictionary. If the identifier WFN is not 354
present in the Official CPE Dictionary, then the product MUST determine if the identifier WFN is 355
deprecated in an Extended CPE Dictionary to which it has access. If the identifier WFN is 356
deprecated, the product MUST resolve the correct non-deprecated identifier WFNs for use in 357
place of the deprecated identifier WFN. The product MUST follow the process specified in 358
section 5.2.3 to perform this resolution. This requirement MAY be ignored if the product is 359
intending to communicate information about deprecated identifier WFNs. 360

3.2 Organization Conformance 361

Organizations creating or maintaining CPE dictionaries may claim conformance with the CPE 2.3 362
Dictionary Specification if that organization meets the requirements in this section. This section first 363
provides the generic requirements for all organizations claiming conformance with the CPE 2.3 364
Dictionary Specification. This section then provides the requirements specific to the type of dictionary 365
the organization is creating/maintaining (i.e. Official CPE Dictionary vs. Extended CPE dictionary). 366

1. Organizations creating/maintaining a CPE dictionary MUST adhere to the minimum set of 367
identifier WFN acceptance criteria defined in section 5.1. Organizations MAY further restrict 368
these acceptance criteria, but organizations MUST NOT conflict with the criteria. 369

2. Organizations creating/maintaining a CPE dictionary MUST adhere to the identifier WFN 370
deprecation process defined in section 5.2.2 when performing deprecation. 371

3. Organizations creating/maintaining a CPE dictionary MUST capture the identifier WFN 372
provenance data defined in section 5.3. 373

 8

4. Organizations creating/maintaining a CPE dictionary MUST ensure that the data captured within 374
their dictionary adheres to the data model defined in section 9; this includes ensuring that all 375
entries in the dictionary contain the mandatory elements defined in section 9.1. 376

5. Organizations creating/maintaining a CPE dictionary MAY extend the CPE dictionary data model 377
defined in section 9. These organizations MUST use only the extension points defined in section 378
9.3 of this specification when extending the CPE dictionary data model. 379

6. Organizations creating/maintaining a CPE dictionary MUST use a dictionary binding that is valid 380
according to the requirements specified in section 10. 381

7. Organizations creating/maintaining a CPE dictionary SHOULD create and maintain the CPE 382
Management Documents defined in section 7. If an organization does not create organic CPE 383
Management Documents, then the organization MUST adhere to a known set of CPE 384
Management Documents from a different dictionary. 385

8. If an organization is maintaining the Official CPE Dictionary, then that organization MUST 386
adhere to the requirements for the Official CPE Dictionary defined in section 8.1. 387

9. If an organization is creating an Extended CPE dictionary, then that organization MUST adhere 388
to the requirements for Extended CPE dictionaries defined in section 8.2. 389

 9

4. Relationship to Existing Standards 390

This section is primarily informative, and is intended to define the relationship between this specification 391
and any related specifications or standards (both current and past). 392

4.1 Relationship to CPE Specification Stack 393

As mentioned earlier, this specification is the foundation of the CPE Specification Stack, a suite of 394
specifications that together comprise Version 2.3 of the CPE specification stack. This document builds 395
upon The CPE Naming Specification [CPE23-N] and The CPE Name Matching Specification [CPE23-M] 396
to define the concept of a CPE dictionary. This document uses the concepts defined in the naming and 397
matching specifications to formalize the idea of a repository of product identifiers and associated 398
metadata. 399

4.2 Relationship to CPE v2.2 400

The CPE Specification Stack, including this specification, is intended to replace [CPE22]. Whereas 401
[CPE22] defined all elements of CPE in a single document, starting with this release we have changed 402
the organization of CPE to use a stack-based model. In the stack model, capabilities are built 403
incrementally out of simpler, more narrowly defined elements that are specified lower in the stack. This 404
design opens opportunities for innovation, as novel capabilities can be defined by combining only the 405
needed elements, and the impacts of change can be better compartmentalized and managed. The CPE 406
Specification Stack is intended to provide all the capabilities made available by [CPE22] while adding 407
new features suggested by the CPE user community. 408
 409

 10

5. Rules and Acceptance Criteria 410

This section defines the high-level rules and acceptance criteria relating to identifier WFNs contained 411
within a CPE dictionary. 412

5.1 Acceptance Criteria 413

If an organization is a Dictionary Maintainer, then that organization MUST only permit valid identifier 414
WFNs in the dictionary3

The purpose of the acceptance criteria defined in the following sub-sections is to ensure a certain degree 417
of interoperability across all CPE dictionaries in existence. The CPE Dictionary Specification achieves 418
this interoperability through the standardized restriction of identifier WFNs permitted in a CPE 419
dictionary. This standardized restriction ensures that dictionary users may rely on a specific level of 420
format and quality relating to identifier WFNs stored in all CPE dictionaries in existence. 421

; an identifier WFN is valid if it meets the acceptance criteria defined in the 415
following sub-sections. 416

As mentioned previously, a CPE dictionary is a collection of identifier WFNs that serve to identify 422
classes of products that exist in the world. To support this idea, the acceptance criteria focus on ensuring 423
that each identifier WFN contained within a CPE dictionary identifies a single product class that exists in 424
the world. These acceptance criteria represent the minimum set of rules required for WFNs within a 425
dictionary. Dictionary Maintainers MAY further restrict the acceptance criteria defined in this section, 426
but the maintainers MUST NOT relax the criteria. The Official Dictionary is permitted to further restrict 427
these rules as well, but SHOULD NOT since it will require all Extended Dictionaries to implement the 428
restrictions. 429

5.1.1 Permitted Concepts and Special Characters 430

CPE Naming Specification [CPE23-N:5.5.1] reserves a set of logical values and special characters for use 431
within a CPE attribute value. The CPE Dictionary Specification permits a subset of these logical values 432
to be contained within dictionary identifier WFNs. 433

5.1.1.1 NA Logical Value 434

Identifier WFNs contained within a CPE dictionary MAY contain the NA logical value within CPE 435
attribute values, but CPE Names MUST NOT include the NA logical value within part, vendor or product 436
attributes. 437

The NA value within a CPE attribute signifies that the attribute is Not Applicable for a specific product. 438
For example, a vendor may distribute the first release of a product that contains no update, but later 439
releases an update to this first release in the form of a service pack. This example contains two distinct 440
products, the first product that contains no update, and the second product that does contain an update. 441
The identifier WFN created to represent the first release of the product would contain an update attribute 442
with a value of NA (i.e. update=”NA”) since the update attribute is known to be not applicable to the 443
product. The identifier WFN created to represent the second release of the product would contain an 444
update attribute with a value of sp1 (i.e. update=”sp1”). 445

3 Pseudo code that implements this rule is found in section 10.1.2, in the function accept-name(w, d).

 11

5.1.1.2 ANY Logical Value 446

Identifier WFNs contained within a CPE dictionary MAY contain the ANY logical value within CPE 447
attribute values, but identifier WFNs MUST NOT include the ANY logical value within part, vendor, 448
product, or version attributes4

When a Dictionary Contributor uses ANY within a CPE attribute, it signifies that there is not enough 450
information to populate the specific CPE attribute at the time of name creation. The need for this logical 451
value originates from the mixing of semantics within the identifier WFN. It is normal that over any given 452
time span the amount of information known about a product will grow. To support this growth of 453
information within a CPE it is necessary to evolve the identifier WFN itself. For example, when an 454
organization discovers more information about a given product represented by an existing identifier WFN 455
in the dictionary they must modify that identifier WFN to include the new information. Section

. 449

5.2.2 of 456
this specification defines the formal deprecation process for tracking changes to identifier WFNs within a 457
dictionary. 458

Showing the full evolution of an identifier WFN requires showing the start of the process, which in some 459
cases is an identifier WFN with a certain amount of missing data. To show changes to this identifier a 460
CPE dictionary MUST capture the missing data using the ANY logical value within the specific CPE 461
attribute for which data is missing. It is necessary to explicitly represent this concept within an identifier 462
WFN to allow the identifier WFN to formally evolve, as more information becomes known relative to the 463
product identified. 464

5.1.2 Restricted Concepts and Special Characters 465

CPE Naming Specification [CPE23-N:5.5.2] reserves a set of special characters for use within a CPE 466
attribute value. The CPE Matching Specification [CPE23-M:5.1.3] assigns specific meaning to a subset 467
of these special characters. The matching specification defines these characters as wild card characters. 468
This wild-card concept works well when creating expressions to represent a set of products, but it does 469
not add value to a WFN attempting to identify a single product. Therefore, the meaning imposed on these 470
characters invalidates their use within the attribute values of an identifier WFN. CPE Dictionaries 471
MUST NOT contain any identifier WFNs with attribute values containing any of the values specified in 472
the following subsections, however CPE Dictionaries MAY contain these values within WFNs not 473
serving as identifiers (e.g. within deprecation logic). CPE names containing these values are not valid 474
identifier WFNs5

5.1.2.1 Asterisk 476

. 475

Identifier WFNs contained within a CPE dictionary MUST NOT contain the Asterisk character within 477
any attribute of the CPE Name, unless the Asterisk is escaped. The CPE Matching Specification [CPE23-478
M:5.1.3] defines the Asterisk as a multi-character, embeddable wildcard. The concept of an embedded 479
wildcard character works well when creating expressions to describe a set of products, but it does add not 480
value to a WFN attempting to identify one, and only one, product. 481

4 Section 4.2.3 provides a complete description of the reasoning for disallowing the ANY value in the part, vendor, product,

version attributes.
5 Pseudo code that implements this rule is found in section 10.1.2, in the function contains-restricted-

characters(w).

 12

5.1.2.2 Question-mark 482

Identifier WFNs contained within a CPE dictionary MUST NOT contain the Question-mark character 483
within any attribute of the CPE Name, unless the question-mark is escaped. The CPE Matching 484
Specification [CPE23-M:5.1.3] defines the question-mark as a single-character, embeddable wildcard. 485
The concept of an embedded wildcard character works well when creating expressions to describe a set of 486
products, but it does not add value to a WFN attempting to identify one, and only one, product. 487

5.1.3 CPE Name Completeness - Required CPE Attributes 488

Identifier WFNs contained within a CPE dictionary MUST contain known data for the part, vendor, 489
product, version attributes and this data MUST NOT include the ANY logical value. Also, identifier 490
WFNs within a CPE dictionary MUST NOT include the NA logical value in the part, vendor or product 491
attributes, but the NA value MAY be used in the version attribute. This rule is in place to ensure that all 492
identifier WFNs within a CPE dictionary contain the minimum amount of data required to identify a 493
unique product class. 494

This requirement enforces a minimum degree of completeness for the identifier WFNs within a CPE 495
dictionary. This specification determines identifier WFN completeness by analyzing the amount of 496
known data within the attributes of an identifier WFN. The ANY logical value is useful for capturing the 497
fact that data for certain attributes of an identifier WFN has not yet been discovered. However, ANY 498
does not increase the completeness of an identifier WFN, only known data can increase the identifier 499
WFN completeness. Known data here refers to any value that represents some distinct aspect of a product 500
(e.g. “sp1”, “2.0”, “Microsoft”, “ios”), this includes the NA logical value since it represents the known 501
fact that absolutely no data exists for a specific CPE attribute. 502

5.1.4 CPE Name Uniqueness 503

Every identifier WFN contained within a CPE dictionary MUST be unique in the sense that it MUST 504
NOT result in a superset match6

6.2

 against a more complete identifier WFN contained within the dictionary. 505
The term 'match' means matching as specified in The CPE Matching Specification [CPE23-M], and more 506
specifically in section of this specification. This requirement exists to enforce the fact that a CPE 507
dictionary is a collection of product identifiers, where each CPE Name within the dictionary represents 508
one unique class of product in the world. 509

Dictionary Maintainers must use matching to determine CPE uniqueness to deal with the fact that CPE 510
Names containing the ANY logical value may exist within the dictionary7

5.1.1.2
. As discussed in section 511

, it is possible for CPE Name creators to submit names to the dictionary to identify products 512
without having the full set of information required to populate all CPE attributes with known data. CPE 513
dictionaries must support this situation since lack of information is a reality in the IT world. At the same 514
time, dictionaries MUST NOT include these non-complete names if a more complete version of that name 515
exists in the dictionary. 516

To provide an example (focusing on the CPE update attribute), suppose that a CPE dictionary contains the 517
following identifier WFN version of a CPE: 518

6 The concept of a "superset match" is formally defined in the CPE Matching Specification [CPE23-M:6.2]
7 Pseudo code that implements this rule is found in section 10.1.2, in the function matches-more-complete-in-

dictionary(w, d).

 13

wfn:[part="a", vendor="foo_company", product="bar", version="2.3" 519
update=”sp1”, edition="ANY", language=="ANY", sw_edition="ANY", 520
target_sw="ANY", target_hw="ANY", other=="ANY"] 521

The above CPE represents the hypothetical product: Foo Company Bar 2.3 sp1. At some later point in 522
time, a Dictionary Contributor submits the following identifier WFN version of a CPE for potential 523
inclusion within the same dictionary: 524

wfn:[part="a", vendor="foo_company", product="bar", version="2.3" 525
update="ANY", edition="ANY", language="ANY", sw_edition="ANY", 526
target_sw="ANY", target_hw="ANY", other="ANY"] 527

This new WFN represents the hypothetical product: Foo Company Bar 2.3. The difference with this new 528
WFN is that “ANY” is the value for the update attribute. This means that the contributor of this WFN does 529
not know the correct value of the update field at the time of submission. The acceptance criteria defined 530
in this document does not permit this submission because an identifier WFN already exist that contains a 531
known values for the update field of the Bar 2.3 product. The reason for this restriction is that the less-532
complete WFN does not represent any real-world product, but instead represents a set of existing 533
identifier WFNs within the dictionary. If the Dictionary Contributor discovers a new update of the 534
product Foo Company Bar 2.3, then the contributor should submit an identifier WFN containing the new 535
update value. 536

This does not mean that an identifier WFN representing the product Foo Company Bar 2.3 with no update 537
is not permitted (e.g., the first release of the product contained no update). The identifier WFN 538
representing the product with no update would contain the NA logical value in the update attribute. The 539
following CPE does meet the acceptance criteria since it represents a real-world product that is known to 540
have no update (i.e. the initial release of Bar 2.3): 541

wfn:[part="a", vendor="foo_company", product="bar", version="2.3" 542
update="NA", edition="ANY", language="ANY", sw_edition="ANY", 543
target_sw="ANY", target_hw="ANY", other="ANY"] 544

5.2 CPE Dictionary Deprecation Process 545

CPE Deprecation is a process specific to CPE dictionaries. When a Dictionary Maintainer deprecates an 546
identifier WFN within a dictionary, it signifies that the deprecated identifier WFN is no longer valid. 547
This means that CPE dictionary users MUST NOT use deprecated identifier WFNs. 548

The process of CPE Deprecation is necessary to support the fact that all identifier WFNs stored within the 549
CPE dictionary MUST be immutable. This requirement for immutability derives from the fact that the 550
data relating to the product identified is captured in the identifier itself. This means that the Dictionary 551
Maintainer must modify the identifier WFN to modify the data about the product. The problem here 552
evolves from the fact that as soon as the Dictionary Maintainer modifies the identifier WFN any historical 553
information about that identifier WFN disappears, including evidence of the identifier's existence. This 554
disappearance will cause problems for any CPE User already using the old identifier WFN. Restricting 555
the ability to change identifier WFNs within a CPE dictionary resolves this problem. 556

The fact that identifier WFNs within a CPE dictionary are immutable means that any updates to the 557
product data captured in the identifier WFN must occur through deprecation. For example, when an 558
organization discovers more information about a product represented by an existing identifier in the 559
dictionary they must modify that identifier to include the new information. To support this modification 560

 14

of an identifier WFN it is necessary to deprecate the legacy identifier WFN in favor of the new identifier 561
WFN, or set of identifier WFNs. 562

An important distinction exists between the set of names that deprecate an identifier WFN and the 563
identifier WFN that a CPE User selects as a replacement of the deprecated name. The CPE dictionary 564
may link a deprecated identifier WFN to a set of identifier WFNs replacing it, but this is done for 565
informational purposes. When making this deprecation relationship the Dictionary Maintainer is 566
asserting any identifier WFN within the set of new identifier WFNs is a valid replacement for the 567
deprecated identifier WFN. Using this information a CPE dictionary user may, depending on the use 568
case, decide on the appropriate name to use as a replacement, or decide to use the entire set. For example, 569
when resolving the deprecating entries for deprecated name found within an applicability statement for a 570
vulnerability an organization may find it useful to use the entire set to avoid possible false negatives. 571

Section 5.2.1 defines the different types of deprecation that may occur within a CPE dictionary. Section 572
5.2.2 describes how this deprecation process works in the context of a CPE dictionary. Section 5.2.3 573
describes how CPE dictionary users should process deprecated identifier WFNs. Section 9 describes the 574
data model for capturing all information relating to the deprecation process. 575

5.2.1 Deprecation Types 576

This section defines three distinct types of deprecation that a Dictionary Maintainer may perform; these 577
types include Identifier WFN Correction, Identifier WFN Removal, and Additional Information 578
Discovery. When performing CPE deprecation, the Dictionary Maintainer MUST choose the type of 579
deprecation they are performing. The following list defines the three types in detail: 580

 Identifier WFN Correction



 – An error occurred during name creation and the Dictionary Maintainer 581
must update the identifier WFN to fix this error. The specific type of error may vary between a range 582
of possibilities including a syntax error (e.g. typo, misspelling), or an incorrect product listing. For 583
example, a Dictionary Maintainer may add a product to the dictionary, only to later discover that the 584
added product is only a component library of a larger product. In this case, the dictionary maintainer 585
would deprecate the identifier WFN representing the component library to the identifier WFN 586
representing the actual product containing the component. This type of deprecation is one-to-one, 587
with the deprecated WFN pointing to the single new identifier WFN that represents the correct 588
product. 589

Identifier WFN Removal



 – An identifier WFN exists in the dictionary that does not belong and has 590
no replacement. This condition normally results from a case where the Dictionary Maintainer makes 591
an error that cannot be corrected with a new identifier WFN (i.e. the name should never have been 592
included in the dictionary). In this case, Dictionary Maintainer will deprecate the legacy name 593
without pointing to a new name. 594

Additional Information Discovery – The Dictionary Maintainer adds one or more identifier WFNs 595
to the dictionary that are more complete than an existing identifier WFN within the dictionary. In this 596
case, the pre-existing name really represents a set of possible products that the maintainer did not 597
know about when originally adding the name to the dictionary. This type of deprecation may be one-598
to-many since the Dictionary Maintainer will deprecate the pre-existing name to all of the names that 599
are more complete. This deprecation relationship is largely informational, when making this 600
deprecation the Dictionary Maintainer is asserting that any identifier WFN name within the set of new 601

 15

identifier WFNs is a valid replacement for the deprecated WFN; it is up to the Dictionary User to 602
decide on which individual name to use, or to use the entire set. 603

5.2.2 Performing Deprecation 604

When modifying an existing identifier WFN within a CPE dictionary, the Dictionary Maintainer MUST 605
deprecate the existing identifier WFN, and link the deprecated identifier WFN to the set of new identifier 606
WFNs that are replacing it through the deprecated-by relationship8

Deprecating an identifier WFN signifies to CPE dictionary users that the deprecated name is no longer a 612
valid product identifier. The deprecation of an identifier WFN within a dictionary may occur in three 613
distinct ways according to the type of deprecation required: 614

. The deprecated-by relationship links 607
a single identifier WFN to one or more disparate identifier WFNs. For example, if x is a single identifier 608
WFN and y is a set of identifier WFNs, then "x deprecated-by y" defines a deprecation relationship 609
between x and y. In this example, x represents a single identifier WFN that the Dictionary Maintainer is 610
deprecating and y represents a set of identifier WFNs that is deprecating x. 611

1. The Dictionary Maintainer is performing a deprecation of type “Identifier WFN Correction”. In 615
this case, the Dictionary Maintainer will deprecate the identifier WFN and list exactly one unique 616
identifier WFN as replacing it. 617

2. The Dictionary Maintainer is performing a deprecation of type “Identifier WFN Removal”. In 618
this case, the Dictionary Maintainer will deprecate the identifier WFN and list no new identifier 619
WFNs. 620

3. The Dictionary Maintainer is performing a deprecation of type “Additional Information 621
Discovery”. In this case, the Dictionary Maintainer will deprecate the identifier WFN and specify 622
the set of identifier WFNs replacing it. 623

When a Dictionary Maintainer decides to deprecate an identifier WFN, then the Dictionary Maintainer 624
MUST follow the below deprecation process, this process refers to the identifier WFN that the Dictionary 625
Maintainer is deprecating as the legacy WFN: 626

1. If the Dictionary Maintainer is replacing the legacy WFN with new identifier WFNs, then the 627
Dictionary Maintainer MUST add the new identifier WFN, or set of identifier WFNs, to the CPE 628
Dictionary. 629

2. The Dictionary Maintainer MUST add a deprecation element to the legacy WFN dictionary entry 630
to signify that it is deprecated. If the legacy WFN was previously deprecated, then the Dictionary 631
Maintainer MUST add a new deprecation element to record the new deprecation9

3. The Dictionary Maintainer MUST expand the deprecation element from Step 2 to include one or 633
more deprecated-by elements to record the identifier WFN(s) replacing the legacy WFN. The 634
Dictionary Maintainer MUST specify the type of deprecation within the type attribute of the 635
deprecated-by element. 636

. 632

4. If the Dictionary Maintainer is performing a deprecation of type “Identifier WFN Correction”, 637
then the Dictionary Maintainer MUST populate the name attribute of the deprecated-by element 638
with the identifier WFN replacing the legacy name. 639

8 Section 9 defines the data model that includes the deprecated-by relationship. Specifically the deprecated-by relationship is a

property of the deprecation element that captures all deprecation data for a specific deprecation occurrence.
9 It is possible that multiple deprecations may occur against a single identifier WFN at different times (e.g. it is discovered that

more products are included in the deprecated-by set). To support this, the CPE Dictionary Data model requires that each
deprecation elements within an identifier WFN record the deprecation for one instant in time.

 16

5. If the Dictionary Maintainer is performing a deprecation of type “Additional Information 640
Discovery”, then the Dictionary Maintainer MUST populate the name attribute of the deprecated-641
by element with a WFN representing the set of new identifier WFNs that are replacing the legacy 642
name; this WFN may contains wildcards (e.g. *, ?) to represent a set of identifier WFNs. 643

6. The Dictionary Maintainer MUST record the change against the legacy WFN in the legacy 644
WFN’s provenance information. 645

5.2.3 Use of Deprecated Names 646

Organizations and tools using identifier WFNs from a CPE dictionary MUST NOT use a deprecated 647
identifier WFN, but MUST instead use an identifier WFN that is linked to the deprecated identifier WFN 648
through the deprecated-by relationship10

Any organization or tool using a deprecated identifier WFN MUST resolve the correct non-deprecated 653
identifier WFNs using the following process, this process references the dictionary-search 654
function defined in

. It is important to understand that even though a set of names 649
may deprecate one identifier WFN, an organization does not have to use all of these new names. The 650
organization MAY simply pick a non-deprecated name out of the set, or the organization MAY choose to 651
use the entire set. 652

Figure 10-4: 655

1. If the deprecated identifier WFN does not reference any identifier WFNs within the deprecated-656
by element, then the organization MUST choose a new non-deprecated identifier WFN from the 657
dictionary. This situation will occur if deprecation in question is of type “Identifier WFN 658
Removal”. 659

2. If the deprecated identifier WFN does provide an identifier WFN within the deprecated-by 660
element and the deprecation type is “Identifier WFN Correction” then the organization MUST 661
resolve the dictionary entry containing the identifier WFN listed. The organization MUST 662
resolve this identifier WFN using the dictionary-search function, passing the identifier 663
WFN, the dictionary, and a value of true as the parameters to the function; these arguments will 664
result in an identifier lookup operation. 665

3. If the deprecated identifier WFN does provide a WFN within the deprecated-by element and the 666
deprecation type is “Additional Information Discovery” then the organization MUST resolve the 667
set of dictionary entries containing the identifier WFNs. The organization MUST resolve this set 668
of identifier WFNs using the dictionary-search function, passing the WFN, the 669
dictionary, and a value of false as the parameters to the function. 670

4. It is possible that multiple deprecation elements will exist, or that a single deprecation element 671
will contain multiple deprecated-by elements, normally all of type “Additional Information 672
Discovery”. In this case, the organization MUST iterate through the above steps for all 673
deprecated-by elements provided. The organization MUST take the union of all resolved sets of 674
identifier WFNs, this union is the correct set of identifier WFNs that have replaced the legacy 675
WFN. 676

5. The organization MAY encounter deprecated identifier WFNs in the set of identifier WFNs 677
resolved in Step 4. In this case, the organization MUST follow the above process replace these 678
deprecated names with the set of names that deprecated it; this process may be recursive. 679

6. The final set of resolved names represents all names that replace the legacy WNF. Organizations 680
MAY either use all of these names, or pick one name out of the set to use in place of the legacy 681
WFN. 682

10 This requirement does not apply to tools and organization purposefully communicating information relating to deprecated

WFNs.

 17

5.3 CPE Dictionary Provenance Data 683

CPE Dictionary Maintainers MUST capture the required provenance data specified in section 9. The 684
provenance data required includes data useful in understanding the reasoning behind changes made to 685
identifier WFNs stored within a CPE Dictionary. This provenance data also captures the organization 686
responsible for identifier WFN submissions, as well as the authority behind the submissions. 687

 18

6. CPE Dictionary Searching 688

This section defines the different ways CPE Dictionary users can perform searching against a CPE 689
Dictionary. There are two scenarios relating to searching against a CPE dictionary. The first scenario 690
involves looking up a single identifier WFN within a dictionary. The second scenario involves using 691
WFN representing a set of products to search against the dictionary to determine what identifier WFNs 692
within the dictionary are members of that set. Both of these scenarios leverage the CPE Matching 693
algorithm11

6.1 Identifier Lookup 696

 when performing the search operations. The following sub-sections explore both scenarios in 694
detail using pseudo code to define the searching algorithms. 695

Identifier lookup involves using a single identifier WFN (i.e. the source identifier WFN) to search against 697
a dictionary to see if that identifier exists within the dictionary. In this scenario, a tool would iterate over 698
each entry in a dictionary to determine if any identifier WFN in the dictionary is equal to the source 699
identifier WFN. Equality is determined if all attribute values in the source identifier WFN are equal to 700
the corresponding attribute values of a dictionary identifier WFN. The CPE_EQUAL function defined in 701
the CPE Matching Specification [CPE23-M:7.2] presents a formal implementation of this equality test. 702
There are two useful results from this searching operation: either the source identifier WFN matches 703
exactly against one, and only one, dictionary identifier WFN, or there is no match. The following list 704
defines each result type in more detail: 705

 Match – Source identifier WFN matches exactly against one, and only one, identifier WFN 706
within the dictionary. When a match is found the result of the operation will be the dictionary 707
identifier WFN that matched. 708

 No Match – Source identifier WFN does not fully match against any identifier WFN within the 709
dictionary. When no match is found the result of the operation will be a null value. 710

 711
Section 10.1.3 defines the formal implementation of this identifier lookup operation in abstract pseudo 712
code. 713
 714

6.2 Dictionary Searching 715

Dictionary searching involves using a source WFN representing a set of products to search against a 716
dictionary to determine what identifier WFNs within the dictionary are members of that set. This 717
scenario is similar to using a SQL query to search against a relational database to find a specific set of 718
rows; in this analogy, the source WFN represents the SQL query, and the dictionary represents the 719
relational database. This type of searching leverages the CPE Matching algorithm to determine the 720
relationship between the set represented by the source WFN and the identifier WFNs within the 721
dictionary. In dictionary searching, a tool would iterate over each entry in the dictionary to determine if 722
any identifier WFN within the dictionary is a member of the set represented by the source WFN. There 723
are three useful results from this searching operation; the following list defines each result type in more 724
detail: 725

 Superset Match – Set represented by source WFN contains one or more identifier WFNs from 726
the dictionary. In set theory language, the set represented by the source WFN is a superset of a 727

11 The CPE Matching Specification [CPE23-M:7.2] formally defines the CPE Matching Algorithms used in this section, and in

accompanying pseudo code implementations in section 10.1.3.

 19

portion of the dictionary; containing one or more identifier WFNs within the dictionary. When a 728
match is found the result of the operation will be the set of matching dictionary identifier WFNs. 729

 Subset Match – A Subset condition arises when the set represented by the source WFN is a 730
possible subset of one or more identifier WFNs within the dictionary. This situation will only 731
occur if the source WFN it is more specific than one or more names within the dictionary (i.e. 732
represents a subset of a dictionary name). In some situations, this result may raise an error, since 733
the tool/organization performing the search may want to notify the Dictionary Maintainer that a 734
WFN in the wild is more specific than any identifier WFN within the dictionary. 735

 No Match – There is no relationship between the set represented by the source WFN and the 736
identifier WFNs within the dictionary. The source WFN is disjoint with the dictionary. When no 737
match is found, the result of the operations will be a null value. 738

 739
Section 10.1.3 defines the formal implementation of this dictionary search operation in abstract pseudo 740
code. This pseudo code leverages the CPE_SUPERSET and CPE_SUBSET functions defined in the CPE 741
Matching specification [CPE23-M:7.2] to implement the search operation. 742
 743

 20

7. Management Documents 744

Every CPE dictionary is required to have a set of supporting management documentation associated with 745
it. This set of supporting documentation is required to improve the transparency relating to dictionary 746
acceptance criteria, dictionary content creation decisions and processes associated with the dictionary. 747
When an organization serves as a CPE Dictionary Maintainer it MUST create, or reference, a series of 748
accompanying management documents capturing rules and processes specific to the dictionary 749
maintained by the organization. 750

It is possible for a single community to establish multiple Extended CPE dictionaries. In these situations 751
the Extended Dictionary Maintainers MAY reference a set of external CPE Dictionary Management 752
documents as the authoritative documents for the specific Extended Dictionary. 753

The remainder of this section defines each management document required. 754

7.1 Dictionary Content Management and Decisions Document 755

Dictionary Maintainers MUST either create or reference a Dictionary Content Management and 756
Decisions Document. The purpose of the decisions document is to document the procedures related to 757
CPE identifier creation within a particular dictionary or set of dictionaries. All procedures defined in the 758
decisions document MUST NOT override or conflict with the high level policy defined in the CPE 759
dictionary Specification. The decisions document MUST capture the following information: 760
 761

1. Rules relating to dictionary specific acceptance criteria for CPE Names. 762
2. Identification Strategies relating to different product types. Due to the heterogeneous nature of 763

product versioning in the IT industry, multiple disparate strategies for versioning products exist. 764
Where possible, the Dictionary Content Management and Decisions Document should document 765
the different Identification Strategies captured within the dictionary. For example, if a specific 766
product line uses seven digits within its version syntax, then the Decisions Document should 767
document the semantics of each digit within this version syntax12

3. Automated identifier WFN creation strategies for specific products. These strategies may 769
include the API calls or functions to call on certain products to populate specific attributes of an 770
identifier WFN. 771

. 768

4. Lists of valid values for specific CPE attributes where appropriate. Valid value lists may be 772
either global, or pertain to specific CPEs. For example, it is possible to have a granular valid 773
value list for the version attribute of a specific vendor and product, without extending the scope 774
of this valid values list to every CPE version attribute within the dictionary. 775

5. Abbreviation rules for data within specific CPE attributes where appropriate. Abbreviation rules 776
may be either global, or pertain to specific CPEs. 777

6. Rules relating to any dictionary specific provenance data which the dictionary records. 778

12 Appendix B provides an informative overview relating to differences between versioning strategies in the IT industry.

 21

7.2 Dictionary Process Management Document 779

Dictionary Maintainers MUST either create or reference a Dictionary Process Management Document. 780
The purpose of the process management document is to document all processes associated with a 781
particular dictionary or set of dictionaries. All procedures defined in the process management document 782
MUST NOT override or conflict with the high level policy defined in the CPE dictionary Specification. 783
The process management document MUST capture the following information: 784

1. The scope of the dictionary. 785
2. The target audience of the dictionary. 786
3. The submission process for the dictionary that users must follow to submit new CPE identifiers 787

for inclusion within the dictionary. At a minimum, this overview should include the submission 788
format, the process for starting the submission process, and the workflow surrounding the 789
submission process. 790

4. The content decisions process that the community follows to create the content decision rules that 791
are captured in the Dictionary Content Management and Decisions Document. 792

5. The CPE Identifier modification process followed by Dictionary Maintainers. 793
6. The dictionary distribution process and methodology. At a minimum, this should define the 794

binding, in which the dictionary is distributed. 795

 22

8. Official and Extended Dictionaries 796

A distinction exists between the Official CPE Dictionary and Extended CPE dictionaries. This section 797
defines each concept and clarifies the distinction between the two. 798

8.1 Official CPE Dictionary 799

The National Institute of Standards and Technology hosts the Official CPE Dictionary13

The Official CPE Dictionary MUST be fully compliant with the requirements of this specification. 807
Specifically the Official CPE Dictionary MUST meet the following requirements: 808

, which is the 800
authoritative repository of identifier CPE names. The goal of the CPE stack of specifications is to provide 801
entities within the IT industry a standardized way to describe and identify IT products. The Official CPE 802
Dictionary provides the mechanism to support this interoperability for product identifiers. The 803
authoritative nature of the Official CPE Dictionary allows organizations to search for, and find identifier 804
WFNs in one centralized place without worrying about dealing with conflicts between federated 805
dictionaries. 806

 The Official CPE Dictionary MUST be conformant with all organizational conformance rules in 809
section 3.2 810

 The Official CPE Dictionary MUST house its own set of management documents as specified in 811
section 7 812

 While permitted, the Official CPE Dictionary SHOULD NOT restrict the acceptance criteria 813
defined in section 5.1 because doing so would require all Extended CPE dictionaries to 814
implement the same restrictions. 815

8.2 Extended CPE Dictionaries 816

Organizations MAY stand up Extended CPE dictionaries to store identifier WFNs not present in the 817
Official CPE Dictionary. An Extended CPE dictionary is a dictionary that an organization may stand up 818
to house identifier WFNs not found in the Official CPE Dictionary. There are multiple reasons for 819
possible inconsistency between the official dictionary and extended dictionary identifier set. For 820
example, an organization may have to create identifier WFNs for proprietary products that are only useful 821
within that organization. Another organization may track new products which do not yet have official 822
identifier WFNs, this organization may want to track these identifier WFNs internally until the identifier 823
WFN quality has reached a point where the organization submits them to the Official CPE Dictionary. 824

Organizations creating Extended CPE dictionaries MUST adhere to the following requirements: 825

 Extended CPE dictionaries MUST be conformant with the organizational conformance rules in 826
section 3.2 827

 Extended CPE dictionaries SHOULD house its own set of management documents as specified in 828
section 7. If organic documents are not required, the Dictionary Maintainer SHOULD reference 829
the Official CPE Dictionary Management Documents as applicable to the extended dictionary. 830

13 The Official CPE Dictionary is available at http://nvd.nist.gov/cpe.cfm.

 23

 Extended CPE dictionaries MUST adhere to any acceptance criteria restrictions implemented in 831
the Official CPE Dictionary. 832

 Extended CPE dictionaries MAY further restrict the Official CPE Dictionary acceptance criteria, 833
but it MUST not conflict with the official dictionary criteria. 834

 Extended CPE dictionaries SHOULD NOT contain identifier WFNs that conflict with the Official 835
CPE Dictionary. This means that if both the Official CPE Dictionary and an Extended CPE 836
dictionary contain an identifier WFN for the same product, then that identifier WFN SHOULD be 837
the same. If Extended Dictionary Maintainers do contain conflicting names, they SHOULD try to 838
resolve the confliction with the Official Dictionary. 839

 Extended CPE dictionaries MUST NOT include non-unique WNFs with respect to matching. 840
Section 5.1.4 defines this rule in respect to a single dictionary, Extended Dictionaries MUST 841
NOT contain non-unique identifier WFNs with respect to itself or the Official CPE Dictionary. 842

 Organizations MAY use Extended CPE dictionaries to store identifier WFNs for proprietary 843
products. 844

 Organizations MAY use Extended CPE dictionaries to store identifier WFNs not yet found in the 845
Official CPE Dictionary, but these organizations SHOULD try to submit these new identifier 846
WFNs to the Official CPE Dictionary as official identifier WFNs. 847

 24

9. Data Model Overview 848

This section defines the data model that all CPE Dictionaries MUST implement. The data model does not 849
prescribe a specific binding or implementation. It merely describes the data that is required to support the 850
technical use cases. This section uses the term “element” to identify the classes within the data model, 851
and the term “property” to identify any properties of a class. Values of a property may include a simple 852
literal value, or another element representing some complex relation to the top-level element; to clarify 853
this distinction the type column lists the type of the property. The syntax for literal types is “literal - 854
type”, where type is the specific literal type. The syntax for element types is “element - type”, where 855
element is the specific element type. 856
 857
This data model makes special accommodations to ensure that bindings of the data model may remain 858
backwards compatible with the CPE Dictionary 2.2 XML Schema. Any XML Schema based bindings 859
generated from this data model may produce instance data that validates against the CPE Dictionary 2.2 860
XML Schema. 861
 862
A CPE dictionary is only a collection of identifier WFNs and metadata associated with these identifiers. 863
To support this, the CPE Dictionary data model revolves around one core element called "cpe-item" that 864
holds all the information relating to a single identifier WFN. The cpe-item element has evolved out of the 865
CPE Dictionary 2.2 XML Schema to support backwards compatibility. The cpe-item element contains a 866
"cpe23-item" element that captures all CPE 2.3 specific data including provenance data and an upgraded 867
deprecation system. 868
 869

9.1 Mandatory Elements 870

This section defines the mandatory elements for each identifier WFN within a CPE Dictionary. 871

Element Name: cpe-list
Definition This element contains all cpe-items held within a dictionary

cpe-item
properties

Name Type Count Definition
cpe-item element - cpe-

item
1-n This element represents a single identifier

WFN within a CPE Dictionary. All metadata
relating to the specific identifier WFN is
contained within this element.

Example
Binding
(Text)

cpe-item: see cpe-item element

Example
Binding
(XML)

<cpe23:cpe-list>
 <cpe23:cpe-item name="cpe:/a:adobe:acrobat:3”>

 </cpe23:cpe-item>
</cpe23:cpe-item>

 872
 873
Element Name: cpe-item

 25

Definition This element represents a single identifier WFN within a CPE Dictionary. All metadata
relating to the specific identifier WFN is contained within this element.

cpe-item
properties

Name Type Count Definition
name literal - CPE

2.2 URI
1 The CPE 2.2 version of the WFN in the CPE

2.2 URI binding.
title literal - string 1-n Human readable title of the WFN.
cpe23-item element -

cpe23-item
1 Element that captures all CPE 2.3 specific

data including the CPE 2.3 formatted string
binding of the WFN.

Example
Binding
(Text)

cpe-item: cpe:/a:adobe:acrobat:3
title: Adobe Acrobat 3
cpe23-item: see cpe23-item element

Example
Binding
(XML)

<cpe23:cpe-item name="cpe:/a:adobe:acrobat:3”>
 <cpe23:title xml:lang="en-US">Adobe Acrobat 3</title>
 <cpe23:cpe23-item name="cpe23:a:adobe:acrobat:3:*:*:*:*:*:*:*"

 </cpe23:cpe23-item>
</cpe23:cpe-item>

 874
 875
Element Name: cpe23-item
Definition This element captures all CPE 2.3 specific data including the CPE 2.3 formatted string

binding of the WFN, provenance data, and deprecation data.

cpe-item
properties

Name Type Count Definition
name literal - CPE

2.3 formatted
string

1 The CPE 2.3 version of the identifier WFN in
the CPE 2.3 formatted string binding.

provenance-
record

element -
provenance-
record

1 Element holding all provenance information
for the given identifier WFN.

deprecation element -
deprecation

0-n Element holding one or more deprecation
entries for the given identifier WFN. It is
possible for a single identifier WFN to have
multiple deprecations that occur at different
time periods.

Example
Binding
(Text)

cpe23-item: cpe23:a:adobe:acrobat:3:*:*:*:*:*:*:*
provenance-record: see provenance-record element
deprecation: see deprecation element

Example
Binding
(XML)

<cpe23:cpe23-item name="cpe23:a:adobe:acrobat:3:*:*:*:*:*:*:*">
 <cpe23:provenance-record>

 </cpe23:provenance-record>
 <cpe23:deprecation date="2006-05-04T18:13:51.0Z">

 </cpe23:deprecation>
</cpe23:cpe23-item>

 26

 876
 877
Element Name: provenance-record
Definition Element holding all provenance information for the given identifier WFN.

cpe-item
properties

Name Type Count Definition
submitter element -

organization
1 The organization responsible for submitting

the identifier WFN.
authority element -

organization
1-n The authority responsible for endorsing the

identifier WFN. Multiple authorities may
endorse the same identifier WFN.

change-
description

element –
change-
description

1-n A description of any changes made to the
identifier WFN.

Example
Binding
(Text)

submitter: see organization element
authority: see organization element
change-history: see change-history element

Example
Binding
(XML)

<cpe23:provenance-record>
 <cpe23:submitter system-id="http://nvd.nist.gov/" name="NVD" date="2006-05-
 04T18:13:51.0Z"/>
 <cpe23:authority system-id="http://nvd.nist.gov/" name="NVD" date="2006-05-
 04T18:13:51.0Z"/>
 <cpe23:change-description change-type="ORIGINAL_RECORD" date="2006-05-
 04T18:13:51.0Z">

 </cpe23:change-description>
 <cpe23:change-description change-type="DEPRECATION" date="2007-05-
 04T18:13:51.0Z">

 </cpe23:change-description>
</cpe23:provenance-record>

 878
 879
Element Name: organization
Definition Element holding information about a specific organization.

cpe-item
properties

Name Type Count Definition
system-id literal - URI 1 Unique URI representing the organization.
name literal - String 1 Human readable name of the organization.
date literal -

Date/Time
1 The date the organization performed an action

relative to an identifier WFN. For example,
the date the organization submitted, or
endorsed a particular identifier WFN.

Example
Binding
(Text)

name: NVD
system-id: http://nvd.nist.gov/
change-history: see change-history element
date: 2006-05-04

Example
Binding

<cpe23:submitter system-id="http://nvd.nist.gov/" name="NVD" date="2006-05-
 04T18:13:51.0Z"/>

 27

(XML)
 880
 881
Element Name: change-description
Definition A description of any changes made to the identifier WFN, or associated metadata.

cpe-item
properties

Name Type Count Definition
change-type literal - String 1 The type of change that occurred. The value

for this property MUST be one of the
following values: “ORIGINAL_RECORD”,
“DEPRECATION”,
“AUTHORITY_CHANGE”
“DEPRECATION_MODIFICATION”. The
meaning of these values is defined below:

• ORIGINAL_RECORD – This change type

should be used when the WFN is first
added to the dictionary.

• AUTHORITY_CHANGE – This change
type should be used when the authority
behind the identifier WFN is modified.

• DEPRECATION – This change type should
be used when the WFN is first deprecated.

• DEPRECATION_MODIFICATION – This
change type should be used when
additional deprecation entries are recorded
for a deprecated WFN.

date literal –
Date/Time

1 Date when the change occurred.

comments literal - String 0 Comments explaining the rationale for the
change.

 evidence-
reference

element –
evidence-
reference

0 Supporting evidence for the change including
a link to external information relating to the
change.

Example
Binding
(Text)

change-type: DEPRECATION
date: 2007-05-04
evidence-reference: see evidence-reference element
comments: This name was deprecated

Example
Binding
(XML)

<cpe23:change-description change-type="DEPRECATION" date="2007-05-04T18:13:51.0Z">
 <cpe23:evidence-reference evidence="CURATOR_UPDATE">
 http:/adobe.com/versionHistory
 </cpe23:evidence-reference>
 <cpe23:comments>This name was deprecated</cpe23:comments>
</cpe23:change-description>

 882
 883
 884

 28

9.2 Optional Elements 885

Element Name: deprecation
Definition An element containing information for a specific deprecation of an identifier WFN. A

single deprecation element may contain a list of WFNs that the enclosing identifier WFN
was deprecated by. One deprecation element represents a deprecation that occurred at a
specific instant in time, it is possible that additional deprecations will occur at a later instant
in time. If a Dictionary Maintainer must submit deprecation entries after the initial
deprecation, then another deprecation element should be added to the identifier WFN.

cpe-item
properties

Name Type Count Definition
date literal – Date /

Time
1 The date the deprecation entry was entered.

deprecated-
by

element -
deprecated-by

1-n The element containing the list of WFNs that
deprecated the enclosing identifier WFN. The
WFN contained within this property does not
have to represent an identifier WFN. This
means that the WFN may contain wildcards
(e.g. ANY, *, ?) and may represent a set of
products. This provides a more robust
mechanism to support One to Many
deprecation logic.

Example
Binding
(Text)

deprecation date: 2006-05-04
deprecated-by: see deprecated-by element

Example
Binding
(XML)

<cpe23:deprecation date="2006-05-04T18:13:51.0Z">
 <cpe23:deprecated-by name="cpe23:a:adobe:acrobat:3.0:*:*:*:*:*:*:*"
 type="NAME_CORRECTION"/>
</cpe23:deprecation>

 886
Element Name: deprecated-by
Definition The element containing the list of WFNs that deprecated the enclosing identifier WFN. The

WFN contained within this element does not have to represent an identifier WFN. This
means that the WFN may contain wildcards (e.g. ANY, *, ?) and may represent a set of
products. This provides a more robust mechanism to support One to Many deprecation
logic.

cpe-item
properties

Name Type Count Definition
name literal – CPE

WFN
1 The WFN that is deprecating the containing

cpe-item.
type literal -

Boolean
1 The type of deprecation associated with the

deprecated-by element. The value for this
property MUST be one of the following
values: “NAME_CORRECTION”,
“NAME_REMOVAL”,
“ADDITIONAL_INFORMATION” The
meaning of these values is defined below:

• NAME_CORRECTION – Specifies the

deprecation is of type “Identifier WFN
Correction”

• NAME_REMOVAL – Specifies the

 29

deprecation is of type “Identifier WFN
Removal”

• ADDITIONAL_INFORMATION –
Specifies the deprecation is of type
“Additional Information Discovery”

These types are defined in more detail in
section 5.2.1.

Example
Binding
(Text)

name: cpe23:a:adobe:acrobat:3.0:*:*:*:*:*:*:*
type: NAME_CORRECTION

Example
Binding
(XML)

<cpe23:deprecated-by name="cpe23:a:adobe:acrobat:3.0:*:*:*:*:*:*:*"
 type="NAME_CORRECTION"/>

 887
 888
Element Name: evidence-reference
Definition Supporting evidence for any change to a WFN, or associated metadata, including a link to

external information relating to the change.

cpe-item
properties

Name Type Count Definition
url literal – url 1 The URL referencing a specific piece of

evidence.
evidence literal – Sting 1 The type of evidence the given URL provides.

The value for this property MUST be one of
the following values: “CURATOR_UPDATE”,
“VENDOR_FIX”, “THIRD_PARTY_FIX”.
The meaning of these values is defined below:

• CURATOR_UPDATE – The curator of the

dictionary discovered information that led
to a change.

• VENDOR_FIX – The vendor of the product
identified in the enclosing WFN released,
or submitted, information that led to a
change.

• THIRD_PARTY_FIX – A third party
released, or submitted, information that led
to a change.

Example
Binding
(Text)

evidence: CURATOR_UPDATE
url: http:/adobe.com/versionHistory

Example
Binding
(XML)

<cpe23:evidence-reference evidence="CURATOR_UPDATE">
 http:/adobe.com/versionHistory
</cpe23:evidence-reference>

 889
 890
 891

 30

9.3 Extension Points 892

Organizations may need to capture data not defined in the CPE Dictionary data model; any organization 893
serving as a CPE Dictionary Maintainer MAY extend the cpe23-item, cpe-list and the provenance-record 894
element to capture additional, organization specific data. If organizations must extend these elements, 895
this extension MUST only occur by adding additional properties to these elements to capture different 896
types of data, or by restricting the values for specific properties. Organizations MUST NOT define rules 897
conflicting with the properties already defined for these elements. 898

 31

10. Implementation and Binding 899

10.1 CPE Dictionary Pseudo Code 900

The following sub-sections contain algorithms that implement concepts described in the rest of the 901
specification. This specification uses an abstract pseudo-code programming language to specify intended 902
computational behavior. Pseudo-code is intended to be straightforwardly readable and translatable into 903
real programming language terms. In reading pseudo-code the following notes should be kept in mind: 904

• All pseudo-code functions are pass by reference, meaning that any changes applied to the 905
supplied arguments within the scope of the function do not affect the values of the variables in the 906
caller’s scope. 907

• In a few cases, the pseudo-code functions reference (more or less) standard library functions, 908
particularly to support string handling. Whenever possible, we reference semantically equivalent 909
functions from the GNU C library, (cf. 910
http://www.gnu.org/software/libc/manual/html_node/index.html#toc_String-and-Array-Utilities). 911

10.1.1 Operations on a CPE Dictionary 912

This section defines a set of functions for performing common activities against a CPE Dictionary. These 913
functions are relatively simple and do not require a pseudo code implementation, but the remaining sub-914
sections will present pseudo code that may utilize these common functions. 915

10.1.1.1 Function get_cpe_items(d) 916

The get_cpe_items(d) function takes a single CPE Dictionary, d, and returns back all cpe-items 917
associated with it. A single cpe-item within the dictionary represents the identifier WFN, and all 918
associated metadata14

10.1.1.2 Function get_cpe_item_WFN(item) 920

. 919

The get_cpe_item_WFN(item)function takes a single cpe-item element and returns back the 921
identifier WFN that it represents. 922

10.1.1.3 Function get(w,a) 923

The get(w,a) accessor function takes two arguments, a WFN w and an attribute a, and returns the 924
value of a. This function is officially defined in the CPE Naming Specification [CPE23-N:5.6.2]. 925

10.1.1.4 Function is_deprecated(item) 926

The is_deprecated(item) function takes in a single cpe-item and returns back true if the 927
cpe-item is deprecated, false if the cpe-item is not deprecated. 928

14 Section 9.1defines the cpe-item element in detail.

 32

10.1.1.5 Function getItem(list, index) 929

The getItem(list, index) function is a helper function for retrieving an item in a list. The 930
function will return the list item at the position specified by index. This function assumes a 0-based 931
index and will return null if no items exist at the provided index. 932
 933

10.1.2 Acceptance Criteria Pseudo Code 934

This section defines the algorithm required to implement the acceptance criteria defined in section 5.1. 935
The core algorithm is implemented in the below pseudo code function named accept-name, that 936
processes a given WFN, w, and compares it against a specific dictionary to determine if the dictionary 937
should accept the new name. The following list provides a brief summary of the algorithm implemented 938
in the accept-name function: 939

1. Use the helper function contains-restricted-characters to determine if the WFN w 940
contains any of the restricted characters defined in section 5.1.2. If w contains any of the 941
restricted characters, accept-name will return false. 942

2. Use the helper function contains-required-attributes to determine if the WFN w 943
contains known data for all of the required attributes specified in section 5.1.3. If w does not 944
contain all of the required attributes, accept-name will return false. 945

3. Use the helper function matches-more-complete-in-dictionary to determine if the 946
WFN w is unique within the dictionary d, as specified in section 5.1.4. If w does not adhere to 947
this rule, or in other words if w matches against a more complete name in the given dictionary d, 948
then accept-name will return false. This function uses the dictionary-search function 949
defined in section 10.1.3 for matching against the dictionary. 950

 951
1 function accept-name(w, d) 952
2 ;; Top-level function to determine if the WFN CPE w should be 953
3 ;; accepted into dictionary d based on high-level acceptance 954
4 ;; criteria. Assumes WFN meets acceptance criteria defined in CPE 955
5 ;; Naming Spec. 956
6 if contains-restricted-characters(w) 957
7 then return false. 958
8 endif. 959
9 if !contains-required-attributes(w) 960
10 then return false. 961
11 endif. 962
12 if matches-more-complete-in-dictionary(w, d) 963
13 then return false. 964
14 endif. 965
15 return true. 966
16 end. 967

Figure 10-1: accept-name function 968

 969
1 function contains-restricted-characters(w) 970
2 ;; Helper-function to determine if WFN CPE w contains characters 971
3 ;; not permitted in dictionary. 972

 33

4 foreach a in w do ;; loop through every attribute in WFN 973
5 s := get(w,a) ;; get string value of attribute 974
6 n := 0. 975
7 loop 976
8 if n >= strlen(s) 977
9 then break. ;; break to outer loop 978
10 endif. 979
11 c := substr(s,n,1). ;; get the n’th character of s. 980
12 if ((c = “*” or c = “?”) and (substr(s,n-1,1) != "\")) 981
13 then 982
14 if (c = "*" and n = 0 and (n + 1 < strlen(s))) 983
15 then continue. ;; single '*' represents ANY 984
16 else return true. ;; embedded '*' or '?' not permitted 985
17 endif. 986
18 else 987
19 ;; character is legal, move on 988
20 n := n + 1. 989
21 continue. 990
22 endif. 991
23 endloop. 992
24 endfor. 993
25 return false. 994
26 end. 995

 Figure 10-2: contains-restricted-characters function 996

 997
1 function contains-required-attributes(w) 998
2 ;; Helper-function to determine if required attributes contain 999
3 ;; known data. WFN syntax defined in CPE Naming Spec ensures all 1000
4 ;; attributes contain at least some data. 1001
5 foreach a in {part, vendor, product, version} do 1002
6 s := get(w,a) ;; get string value of attribute 1003
7 ;; only loop through required attributes of w 1004
8 if s = "ANY" 1005
9 then return false. 1006
10 endif. 1007
11 if (a != version and s = "NA") 1008
12 then return false. ;; NA only permitted in version 1009
13 endif. 1010
14 endfor. 1011
15 return true. 1012
16 end. 1013

Figure 10-3: contains-required-attributes function 1014

 1015
1 function matches-more-complete-in-dictionary(w, d) 1016
2 ;; Helper-function to determine if identifier WFN w matches a 1017
3 ;; more complete name in the dictionary d (i.e. a superset match). 1018
4 matches := dictionary-search(w, d, false) 1019
5 if (size(matches) > 0) 1020
6 then 1021

 34

7 if (getItem(matches, 0) = "SUPERSET-MATCH") 1022
8 then return false. ;;at least one superset match was found 1023
9 endif. 1024
10 endif. 1025
11 return true. ;; no match, or subset match are both okay. 1026
12 end. 1027
 1028

10.1.3 Dictionary Searching Pseudo Code 1029

This section Figure 10-4 contains pseudo code that implements the identifier lookup and dictionary search 1030
operations defined in section 6. The dictionary-search function implements the two searching 1031
scenarios defined in sections 6.1 and 6.215. This function is focused on returning all non-deprecated 1032
names within a dictionary, but will not filter out deprecated names from the result set, allowing the caller 1033
to filter the names based on use case. While this function will not filter out deprecated names, it does not 1034
guarantee that it will return all matching deprecated names in the result set; it only guarantees the return 1035
of all matching non-deprecated names. When not looking for exact matches, the function will look for all 1036
superset matches within the given dictionary. The function will only look for subset matches if the given 1037
dictionary contains no superset matches. This ordering derives from the CPE Dictionary acceptance 1038
criteria that will not allow a dictionary to contain non-deprecated subset matches if a superset match is 1039
present16

Table 10-1

. 1040

 provides a detailed overview of the dictionary-search function. This pseudo code 1041
leverages the accessor functions defined in section 10.1.1. The code also leverages the CPE_EQUAL, 1042
CPE_SUBSET, and CPE_SUPERSET functions defined in The CPE Matching Specification [CPE23-1043
M:7.2] 1044

 1045
Table 10-1: Description of dictionary-search function 1046

Line Number(s) Description
1 The function accepts three arguments, the source WFN, the dictionary to

search against, and a boolean flag 'exact'. When 'exact' is true the
function will perform and identifier lookup based on the source WFN.
When 'exact' is false the function will perform dictionary searching
for all names contained the source WFN set.

11 Creates a list to store all discovered matches as well as the match
type; if a match is found, then the first position of this list will
contain the match type and the second position will contain the matches
(either single match, or set of matches).

12 -13 If 'exact' is true, the function will enter into logic to determine if
an exact match is present within d. The function will then call the
findExactMatch function (defined in Figure 10-7) to determine if an
exact match exists in the dictionary.

14-20 If an exact match is found, the function will populate the 'response'
list with the response type of 'EXACT-MATCH' and then append the exact
match to the next position in the list. The function will then return

15 This function does not account for deprecation chains. For example if an identifier WFN is found that is deprecated, a tool

may want to recursively search all the identifier WFNs in the deprecation chain (i.e. the set of all identifier WFNs referenced
by the deprecated-by property.

16 The dictionary-search function was designed for readability; more efficient methods for implementing this logic exist.

 35

Line Number(s) Description
the response list, or null if no match was found.

22 The function will call the findSupersetMatches function (defined in
Figure 10-5) to build the set of all superset matches found in the d.

23-28 If any superset matches are found, the function will populate the
'response' list with the response type of 'SUPERSET-MATCH' and then
append the set of matches to the next position in the list. The
function will then return the response list.

29 The function will call the findSubsetMatches function (defined in
Figure 10-6) to build the set of all subset matches found in the d.
NOTE: No non-deprecated subset matches should be present if a superset
match was found.

30-35 If any subset matches are found, the function will populate the
'response' list with the response type of 'SUBSET-MATCH' and then
append the set of matches to the next position in the list. The
function will then return the response list.

36 If no matches were found the function will return null.

 1047
 1048
1 function dictionary-search(source, d, exact) 1049
2 ;; For a given source WFN, source, the function will determine 1050
3 ;; how it relates to the given dictionary, d. If the source WFN 1051
4 ;; is a superset match to one or more identifier WFNs in d, then 1052
5 ;; the function will return that set of names. If the source name 1053
6 ;; is not a superset of any dictionary names, but is a subset of a 1054
7 ;; dictionary name(s), then the function will return the set of 1055
8 ;; dictionary names of which it is a subset. If an exact match is 1056
9 ;; found and exact is true the function will return the exact 1057
10 ;; match. If no match exists the function will return null. 1058
11 response := new List(). 1059
12 if (exact = true) 1060
13 match := findExactMatch(source, d). 1061
14 if (match != null) 1062
15 then 1063
16 response := append(response, "EXACT-MATCH"). 1064
17 response := append(response, match) 1065
18 return response. 1066
19 else return null. 1067
20 endif. 1068
21 endif. 1069
22 supersetMatches := findSupersetMatches(source, d). 1070
23 if (size(supersetMatches) > 0) 1071
24 then ;;superset matches found 1072
25 response := append(response, "SUPERSET-MATCH"). 1073
26 response := append(response, supersetMatches) 1074
27 return response. 1075
28 endif. 1076
29 subsetMatches := findSubsetMatches(source, d). 1077
30 if (size(subsetMatches) > 0) 1078
31 then ;; subset matches found 1079
32 response := append(response, "SUBSET-MATCH"). 1080
33 response := append(response, subsetMatches). 1081

 36

34 return response. 1082
35 endif. 1083
36 return null. 1084
37 end 1085

Figure 10-4: dictionary-search function 1086

Table 10-2: Description of findSupersetMatch function 1087
Line

Number(s)
Description

4 Creates a set to store all discovered superset matches.

5 Starts looping over every cpe-item in given dictionary, d.

7 Retrieves the WFN represented by the current item from the dictionary.

8-11 Passes the source and dictionary WFN to the CPE_SUPERSET function
(defined in CPE Name Matching Specification [CPE23-M:7.2] to determine
how the two names relate. If the source is a 'superset' of the
dictionary name then the function will append the item to the set of
matches.

13 The function will return the set of matches

 1088
 1089
1 function findSupersetMatches(source, d) 1090
2 ;; For a given source WFN, source, the function will find all 1091
3 ;; superset matches contained within the given CPE dictionary, d. 1092
4 matches := new Set(). 1093
5 foreach item in get_cpe_items(d) 1094
6 do 1095
7 dictionaryName := get_cpe_item_WFN(item).;;WFN from cpe-item 1096
8 if (CPE_SUPERSET(source, dictionaryName) = TRUE 1097
9 then 1098
10 matches := append(matches, item). 1099
11 endif. 1100
12 endfor. 1101
13 return matches. 1102
14 end 1103

Figure 10-5: findSupersetMatches function 1104

Table 10-3: Description of findSubsetMatch function 1105
Line

Number(s)
Description

4 Creates a set to store all discovered subset matches.

5 Starts looping over every cpe-item in given dictionary, d.

7 Retrieves the WFN represented by the current item from the dictionary.

8-11 Passes the source and dictionary WFN to the CPE_SUBSET function
(defined in CPE Name Matching Specification [CPE23-M:7.2] to determine
how the two names relate. If the source is a 'subset' of the
dictionary name then the function will append the item to the set of
matches.

13 The function will return the set of matches

 1106
1 function findSubsetMatches(source, d) 1107
2 ;; For a given source WFN, source, the function will find all 1108

 37

3 ;; subset matches contained within the given CPE dictionary, d. 1109
4 matches := new Set(). 1110
5 foreach item in get_cpe_items(d) 1111
6 do 1112
7 dictionaryName := get_cpe_item_WFN(item). ;;WFN from cpe-item 1113
8 if (CPE_SUBSET(source, dictionaryName) = TRUE 1114
9 then 1115
10 matches := append(matches, item). 1116
11 endif. 1117
12 endfor. 1118
13 return matches. 1119
14 end 1120

Figure 10-6: findSubsetMatches function 1121

Table 10-4: Description of findExactMatch function 1122
Line

Number(s)
Description

4 Starts looping over every cpe-item in given dictionary, d.

6 Retrieves the WFN represented by the current item from the dictionary.

7-10 Passes the source and dictionary WFN to the CPE_EQUAL function (defined
in CPE Name Matching Specification [CPE23-M:7.2] to determine how the
two names relate. If the two names are equal then the function will
return the item as the exact match.

12 If not exact matches were found the function will return null.

 1123
 1124
1 function findExactMatch(source, d) 1125
2 ;; For a given source WFN, source, the function will find the 1126
3 ;; exact matche contained within the given CPE dictionary, d. 1127
4 foreach item in get_cpe_items(d) 1128
5 do 1129
6 dictionaryName := get_cpe_item_WFN (item). ;;WFN from cpe-item 1130
7 if (CPE_EQUAL(source, dictionaryName) = TRUE 1131
8 then 1132
9 return item. 1133
10 endif. 1134
11 endfor. 1135
12 return null. 1136
13 end 1137

Figure 10-7: findExactMatch function 1138

10.2 CPE Dictionary Binding 1139

Section 9 defines the core data model that CPE Dictionary Creators must use when creating a CPE 1140
dictionary. Section 9 does not define a specific binding technology for representing either the data model 1141
or instance data generated from the data mode. This separation of data model and binding will allow 1142
disparate bindings to evolve when necessary. 1143

 38

Any CPE dictionary binding must adhere to the following requirements: 1144

 CPE dictionary binding MUST implement all data model elements and properties defined in 1145
Section 9. 1146

 CPE dictionary binding MAY extend the data model defined in Section 9, but extensions MUST 1147
only occur at the valid extension points defined in section 9.3. 1148

Appendix C— lists all valid CPE Dictionary data model bindings.1149

39

Appendix A—Use Cases 1150

This specification defines the concept of an Official CPE Dictionary as the repository of authoritative 1152
identifier WFNs. This official dictionary provides the mechanism for interoperability across the CPE 1153
community since it stores community vetted, authoritative identifier WFNs. When tools or organizations 1154
use the identifier WFNs from the Official CPE Dictionary it is expected that other CPE conformant 1155
organizations will process these identifiers and interpret them in the same way as the originating 1156
organization. 1157

Using Authoritative Product Identifiers 1151

This specification defines the concept of an Official CPE Dictionary as the repository of authoritative 1159
identifier WFNs. This official dictionary provides the mechanism for interoperability across the CPE 1160
community since it stores community vetted, authoritative identifier WFNs. When tools or organizations 1161
use the identifier WFNs from the Official CPE Dictionary it is expected that other CPE conformant 1162
organizations will process these identifiers and interpret them in the same way as the originating 1163
organization. 1164

Extending the Official CPE Dictionary 1158

The concept of an authoritative, community-vetted dictionary presupposes the need for a detailed process 1165
for accepting and maintaining authoritative identifier WFNs. Some organizations may require a CPE 1166
identifier management process that is more robust than the process associated with the Official CPE 1167
Dictionary. This specification defines the concept of Extended CPE Dictionaries to support the 1168
communities need to allow organizations to control their own CPE management process. 1169

Organizations wishing to expand the identifier management process associated with the Official CPE 1170
Dictionary may choose to stand up internal Extended CPE Dictionaries. Organizations may choose to do 1171
this for a variety of reasons including: 1172

 Organizations may need to track, and identify proprietary products that do not belong in the 1173
Official CPE Dictionary. These products include any product the organization develops 1174
internally to satisfy some organization objective. These products are not found outside the 1175
specific organization and therefore a community identifier for these products will serve no value 1176
to the community. Organizations with this requirement may stand up an Extended CPE 1177
Dictionary to identify/track these proprietary products in the same way as any product listed in 1178
the Official CPE Dictionary. 1179

 Organizations may discover new products at a faster rate than the Official CPE Dictionary can 1180
process them. Any organization responsible for running IT security operations may discover new 1181
IT products at a very fast rate; new here means products that do not yet have official identifier 1182
WFNs within the Official CPE Dictionary. In these situations, an organization may stand up an 1183
Extended CPE Dictionary, or set of Extended CPE Dictionaries to develop, and track, identifier 1184
WFNs for newly discovered products. These organizations would submit these new identifier 1185
WFNs when they are satisfied with the level of information captured within the CPE. This 1186
process will allow organizations to create new identifier WFNs when found and use them in 1187
internal processes even before they are included in the Official CPE Dictionary. When these 1188
identifiers are eventually included to the Official CPE Dictionary, the discovering organization 1189
will not have to alter its process since it was already using the correct identifier. 1190

40

Appendix B—Identification Strategies 1191

An identification strategy is the way in which a particular product is identified. More specifically this 1192
includes the way the product is versioned, the syntax of a version string for a product, and the semantics 1193
implied by that version string. Many disparate identifications strategies exist in the IT industry and as a 1194
result of this heterogeneousness it is very difficult to create a common syntax to capture the identifying 1195
characteristics of a product. 1196

The following IT product examples, from a variety of different vendors illustrates the disparate types of 1197
product identification strategies: 1198

- Cisco IOS 12.3(1.2)T 1199

- Cosminexus Application Server 05-01-/A 1200

- firmware designations like 3Com 4500 series switches like V3.01.00s168p01 1201

The CPE Dictionary Specification provides the concept of a Dictionary Content Management and 1202
Decisions Document to allow CPE dictionaries to record the different ways in which products are 1203
identified. This document provides Dictionary Maintainers a mechanism to record the semantics of the 1204
version on a per product basis if necessary. For example, for Cisco IOS the CPE Official Dictionary 1205
Content Management Document may record what each digit in the version actually means (e.g. major 1206
version, minor version, release, interim build number, train identifier). This way, when users of the 1207
dictionary process Cisco IOS WFNs they will have a mechanism that allows them to understand what 1208
each digit of the version attribute for the Cisco IOS product actually means. 1209

41

Appendix C—Valid CPE Dictionary Data Model Bindings 1210

 1212
XML Schema Binding 1211

Figure 10-8 captures the CPE 2.2 Dictionary Schema defined in the CPE 2.2 Specification. All 2.2 CPE 1213
dictionary content validates against this 2.2 schema. Figure 10-9 defines the CPE 2.3 extension of the 2.2 1214
schema. This extension implements the majority of the CPE Dictionary 2.3 data model defined in section 1215
9. All instance documents created using the 2.3 extension schema will also validate against the CPE 2.2 1216
dictionary schema if the cpe23-item is used as the 'any' element in the CPE 2.2 Dictionary Schema 1217
ItemType. Figure 10-10 captures a sample CPE 2.3 Dictionary instance document that validates 1218
against both the CPE 2.2 Dictionary schema, and the 2.3 Dictionary extension schema. 1219
 1220
 1221
1 <?xml version="1.0" encoding="UTF-8"?> 1222
2 <xsd:schema targetNamespace="http://cpe.mitre.org/dictionary/2.0" 1223
3 xmlns:cpe_dict="http://cpe.mitre.org/dictionary/2.0" 1224
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1225
5 xmlns:xml="http://www.w3.org/XML/1998/namespace" 1226
6 elementFormDefault="qualified" 1227
7 attributeFormDefault="unqualified"> 1228
8 1229
9 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" 1230
10 schemaLocation="http://www.w3.org/2001/xml.xsd"/> 1231
11 1232
12 <xsd:annotation> 1233
13 <xsd:documentation xml:lang="en">This is an XML Schema 1234
14 for the CPE Dictionary. It is used to transfer a 1235
15 collection of official CPE Names along with any 1236
16 necessary supporting information (title, references, 1237
17 automated check, etc.). For more information, consult 1238
18 the CPE Specification document. 1239
19 </xsd:documentation> 1240
20 <xsd:appinfo> 1241
21 <schema>CPE Dictionary</schema> 1242
22 <author>Neal Ziring, Andrew Buttner</author> 1243
23 <version>2.2</version> 1244
24 <date>03/11/2009 09:00:00 AM</date> 1245
25 </xsd:appinfo> 1246
26 </xsd:annotation> 1247
27 <!-- == --> 1248
28 <!-- == --> 1249
29 <!-- == --> 1250
30 <xsd:element name="cpe-list" type="cpe_dict:ListType"> 1251
31 <xsd:annotation> 1252
32 <xsd:documentation xml:lang="en"> 1253
33 The cpe-list element acts as a top-level 1254
34 container for CPE Name items. Each individual 1255
35 item must be unique. Please refer to the 1256
36 description of ListType for additional 1257
37 information about the sturcture of this 1258
38 element. 1259

42

39 </xsd:documentation> 1260
40 </xsd:annotation> 1261
41 <xsd:key name="itemURIKey"> 1262
42 <xsd:selector xpath="./cpe_dict:cpe-item"/> 1263
43 <xsd:field xpath="@name"/> 1264
44 </xsd:key> 1265
45 </xsd:element> 1266
46 <xsd:element name="cpe-item" type="cpe_dict:ItemType"> 1267
47 <xsd:annotation> 1268
48 <xsd:documentation xml:lang="en"> 1269
49 The cpe-item element denotes a single CPE Name. 1270
50 Please refer to the description of ItemType for 1271
51 additional information about the structure of 1272
52 this element. 1273
53 </xsd:documentation> 1274
54 </xsd:annotation> 1275
55 <xsd:unique name="titleLangKey"> 1276
56 <xsd:selector xpath="./cpe_dict:title"/> 1277
57 <xsd:field xpath="@xml:lang"/> 1278
58 </xsd:unique> 1279
59 <xsd:unique name="notesLangKey"> 1280
60 <xsd:selector xpath="./cpe_dict:notes"/> 1281
61 <xsd:field xpath="@xml:lang"/> 1282
62 </xsd:unique> 1283
63 <xsd:unique name="checkSystemKey"> 1284
64 <xsd:selector xpath="./cpe_dict:check"/> 1285
65 <xsd:field xpath="@system"/> 1286
66 </xsd:unique> 1287
67 </xsd:element> 1288
68 <!-- == --> 1289
69 <!-- =================== SUPPORTING TYPES ===================== --> 1290
70 <!-- == --> 1291
71 <xsd:complexType name="GeneratorType"> 1292
72 <xsd:annotation> 1293
73 <xsd:documentation xml:lang="en"> 1294
74 The GeneratorType complex type defines an element 1295
75 that is used to hold information about when a 1296
76 particular document was compiled, what version of 1297
77 the schema was used, what tool compiled the 1298
78 document, and what version of that tools was 1299
79 used. Additional generator information is also 1300
80 allowed although it is not part of the official 1301
81 schema. Individual organizations can place 1302
82 generator information that they feel are 1303
83 important and these will be skipped during the 1304
84 validation. All that this schema really cares 1305
85 about is that the stated generator information is 1306
86 there. 1307
87 </xsd:documentation> 1308
88 </xsd:annotation> 1309
89 <xsd:sequence> 1310
90 <xsd:element name="product_name" type="xsd:string" 1311

43

91 minOccurs="0" maxOccurs="1"> 1312
92 <xsd:annotation> 1313
93 <xsd:documentation xml:lang="en"> 1314
94 The optional product_name element 1315
95 specifies the name of the application 1316
96 used to generate the file. 1317
97 </xsd:documentation> 1318
98 </xsd:annotation> 1319
99 </xsd:element> 1320
100 <xsd:element name="product_version" type="xsd:string" 1321
101 minOccurs="0" maxOccurs="1"> 1322
102 <xsd:annotation> 1323
103 <xsd:documentation xml:lang="en"> 1324
104 The optional product_version element 1325
105 specifies the version of the 1326
106 application used to generate the 1327
107 file. 1328
108 </xsd:documentation> 1329
109 </xsd:annotation> 1330
110 </xsd:element> 1331
111 <xsd:element name="schema_version" type="xsd:decimal" 1332
112 minOccurs="1" maxOccurs="1"> 1333
113 <xsd:annotation> 1334
114 <xsd:documentation xml:lang="en"> 1335
115 The required schema_version element 1336
116 specifies the version of the schema 1337
117 that the document has been written 1338
118 against and that should be used for 1339
119 validation. 1340
120 </xsd:documentation> 1341
121 </xsd:annotation> 1342
122 </xsd:element> 1343
123 <xsd:element name="timestamp" type="xsd:dateTime" 1344
124 minOccurs="1" maxOccurs="1"> 1345
125 <xsd:annotation> 1346
126 <xsd:documentation xml:lang="en"> 1347
127 The required timestamp element 1348
128 specifies when the particular document 1349
129 was compiled. The format for the 1350
130 timestamp is yyyy-mm-ddThh:mm:ss. Note 1351
131 that the timestamp element does not 1352
132 specify item in the document was 1353
133 created or modified but rather when 1354
134 the actual XML document that contains 1355
135 the items was created. For example, a 1356
136 document might pull a bunch of 1357
137 existing items together, each of which 1358
138 having been created at some point in 1359
139 the past. The timestamp in this case 1360
140 would be when this combined document 1361
141 was created. 1362
142 </xsd:documentation> 1363

44

143 </xsd:annotation> 1364
144 </xsd:element> 1365
145 <xsd:any minOccurs="0" maxOccurs="unbounded" 1366
146 namespace="##other" processContents="lax"/> 1367
147 </xsd:sequence> 1368
148 </xsd:complexType> 1369
149 <xsd:complexType name="ItemType"> 1370
150 <xsd:annotation> 1371
151 <xsd:documentation xml:lang="en"> 1372
152 The ItemType complex type defines an 1373
153 element that represents a single CPE Name. 1374
154 The required name attribute is a URI which 1375
155 must be a unique key and should follow 1376
156 the URI structure outlined in the CPE 1377
157 Specification. The optional title element 1378
158 is used to provide a human-readable title 1379
159 for the platform. To support uses intended 1380
160 for multiple languages, this element 1381
161 supports the ‘xml:lang’ attribute. At most 1382
162 one title element can appear for each 1383
163 language. The notes element holds optional 1384
164 descriptive material. Multiple notes 1385
165 elements are allowed, but only one per 1386
166 language should be used. Note that the 1387
167 language associated with the notes element 1388
168 applies to all child note elements. The 1389
169 optional references element holds external 1390
170 info references. The optional check element 1391
171 is used to call out an OVAL Definition that 1392
172 can confirm or reject an IT system as an 1393
173 instance of the named platform. Additional 1394
174 elements not part of the CPE namespace are 1395
175 allowed and are just skipped by validation. 1396
176 In essence, a dictionary file can contain 1397
177 additional information the a user can 1398
178 choose to use or not, but this information 1399
179 is not required to be used or understood. 1400
180 </xsd:documentation> 1401
181 </xsd:annotation> 1402
182 <xsd:sequence> 1403
183 <xsd:element name="title" 1404
184 type="cpe_dict:TextType" minOccurs="1" 1405
185 maxOccurs="unbounded"/> 1406
186 <xsd:element name="notes" 1407
187 type="cpe_dict:NotesType" minOccurs="0" 1408
188 maxOccurs="unbounded"/> 1409
189 <xsd:element name="references" 1410
190 type="cpe_dict:ReferencesType" 1411
191 minOccurs="0" maxOccurs="1"/> 1412
192 <xsd:element name="check" 1413
193 type="cpe_dict:CheckType" minOccurs="0" 1414
194 maxOccurs="unbounded"/> 1415

45

195 <xsd:any minOccurs="0" maxOccurs="unbounded" 1416
196 namespace="##other" processContents="lax"/> 1417
197 </xsd:sequence> 1418
198 <xsd:attribute name="name" type="cpe_dict:namePattern" 1419
199 use="required"/> 1420
200 <xsd:attribute name="deprecated" type="xsd:boolean" 1421
201 use="optional" default="false"/> 1422
202 <xsd:attribute name="deprecated_by" 1423
203 type="cpe_dict:namePattern" use="optional"/> 1424
204 <xsd:attribute name="deprecation_date" 1425
205 type="xsd:dateTime" use="optional"/> 1426
206 </xsd:complexType> 1427
207 <xsd:complexType name="ListType"> 1428
208 <xsd:annotation> 1429
209 <xsd:documentation xml:lang="en"> 1430
210 The ListType complex type defines an 1431
211 element that is used to hold a collection 1432
212 of individual items. The required generator 1433
213 section provides information about when the 1434
214 definition file was compiled and under what 1435
215 version. Additional elements not part of 1436
216 the CPE namespace are allowed and are just 1437
217 skipped by validation. In essence, a 1438
218 dictionary file can contain additional 1439
219 information the a user can choose to use or 1440
220 not, but this information is not required 1441
221 to be used or understood. 1442
222 </xsd:documentation> 1443
223 </xsd:annotation> 1444
224 <xsd:sequence> 1445
225 <xsd:element name="generator" 1446
226 type="cpe_dict:GeneratorType" minOccurs="0" 1447
227 maxOccurs="1"/> 1448
228 <xsd:element ref="cpe_dict:cpe-item" 1449
229 minOccurs="1" maxOccurs="unbounded"/> 1450
230 <xsd:any minOccurs="0" maxOccurs="unbounded" 1451
231 namespace="##other" 1452
232 processContents="lax"/> 1453
233 </xsd:sequence> 1454
234 </xsd:complexType> 1455
235 <xsd:complexType name="TextType"> 1456
236 <xsd:annotation> 1457
237 <xsd:documentation xml:lang="en"> 1458
238 The TextType complex type allows the 1459
239 xml:lang attribute to associate a specific 1460
240 language with an element's string content. 1461
241 </xsd:documentation> 1462
242 </xsd:annotation> 1463
243 <xsd:simpleContent> 1464
244 <xsd:extension base="xsd:string"> 1465
245 <xsd:attribute ref="xml:lang"/> 1466
246 </xsd:extension> 1467

46

247 </xsd:simpleContent> 1468
248 </xsd:complexType> 1469
249 <xsd:complexType name="NotesType"> 1470
250 <xsd:annotation> 1471
251 <xsd:documentation xml:lang="en"> 1472
252 The notesType complex type defines an 1473
253 element that consists of one or more child 1474
254 note elements. It is assumed that each of 1475
255 these note elements are representative of 1476
256 the same language as defined by their 1477
257 parent. 1478
258 </xsd:documentation> 1479
259 </xsd:annotation> 1480
260 <xsd:sequence> 1481
261 <xsd:element name="note" type="xsd:string" 1482
262 minOccurs="1" maxOccurs="unbounded"/> 1483
263 </xsd:sequence> 1484
264 <xsd:attribute ref="xml:lang"/> 1485
265 </xsd:complexType> 1486
266 <xsd:complexType name="ReferencesType"> 1487
267 <xsd:annotation> 1488
268 <xsd:documentation xml:lang="en"> 1489
269 The ReferencesType complex type defines an 1490
270 element used to hold a collection of 1491
271 individual references. Each reference 1492
272 consists of a piece of text (intended to be 1493
273 human-readable) and a URI (intended to be a 1494
274 URL, and point to a real resource) and is 1495
275 used to point to extra descriptive 1496
276 material, for example a supplier's web site 1497
277 or platform documentation. 1498
278 </xsd:documentation> 1499
279 </xsd:annotation> 1500
280 <xsd:sequence> 1501
281 <xsd:element name="reference" minOccurs="1" 1502
282 maxOccurs="unbounded"> 1503
283 <xsd:complexType> 1504
284 <xsd:simpleContent> 1505
285 <xsd:extension 1506
286 base="xsd:string"> 1507
287 <xsd:attribute name="href" 1508
288 type="xsd:anyURI"/> 1509
289 </xsd:extension> 1510
290 </xsd:simpleContent> 1511
291 </xsd:complexType> 1512
292 </xsd:element> 1513
293 </xsd:sequence> 1514
294 </xsd:complexType> 1515
295 <xsd:complexType name="CheckType"> 1516
296 <xsd:annotation> 1517
297 <xsd:documentation xml:lang="en"> 1518
298 The CheckType complex 1519

47

299 type is used to define an element for hold 1520
300 information about an individual check. It 1521
301 includes a checking system specification URI, 1522
302 string content, and an optional external 1523
303 file reference. The checking system specification 1524
304 should be the URI for a particular version of 1525
305 OVAL or a related system testing language, and 1526
306 the content will be an identifier of a test 1527
307 written in that language. The external file 1528
308 reference could be used to point to the file in 1529
309 which the content test identifier is defined. 1530

 </xsd:documentation> 1531
310 </xsd:annotation> 1532
311 <xsd:simpleContent> 1533
312 <xsd:extension base="xsd:string"> 1534
313 <xsd:attribute name="system" 1535
314 type="xsd:anyURI" use="required"/> 1536
315 <xsd:attribute name="href" 1537
316 type="xsd:anyURI" use="optional"/> 1538
317 </xsd:extension> 1539
318 </xsd:simpleContent> 1540
319 </xsd:complexType> 1541
320 <!-- === --> 1542
321 <!-- ===================ID PATTERNS ======================== --> 1543
322 <!-- === --> 1544
323 <xsd:simpleType name="namePattern"> 1545
324 <xsd:annotation> 1546
325 <xsd:documentation xml:lang="en"> 1547
326 Define the format for acceptable CPE Names. 1548
327 A URN format is used with the id starting 1549
328 with the word cpe followed by :/ and 1550
329 then some number of individual components 1551
330 separated by colons. 1552
331 </xsd:documentation> 1553
332 </xsd:annotation> 1554
333 <xsd:restriction base="xsd:anyURI"> 1555
334 <xsd:pattern value="[c][pP][eE]:/[AHOaho]?(:[A- 1556
335 Za-z0-9\._\-~%]*){0,6}"/> 1557
336 </xsd:restriction> 1558
337 </xsd:simpleType> 1559
338 </xsd:schema> 1560

Figure 10-8: CPE 2.2 Schema 1561

 1562
1 <?xml version="1.0" encoding="UTF-8"?> 1563
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1564
3 xmlns="http://scap.nist.gov/schema/cpe-extension/2.3" 1565
4 xmlns:xml="http://www.w3.org/XML/1998/namespace" 1566
5 targetNamespace="http://scap.nist.gov/schema/cpe- 1567
6 extension/2.3" elementFormDefault="qualified" 1568
7 attributeFormDefault="unqualified"> 1569

48

8 1570
9 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" 1571
10 schemaLocation="http://www.w3.org/2001/xml.xsd"/> 1572
11 1573
12 <xsd:element name="cpe23-item" type="itemType"/> 1574
13 1575
14 <xsd:complexType name="itemType"> 1576
15 <xsd:sequence> 1577
16 <xsd:element name="provenance-record" 1578
17 type="provenanceRecordType" minOccurs="0"/> 1579
18 <xsd:element name="deprecation" type="deprecationType" 1580
19 minOccurs="0" maxOccurs="unbounded"/> 1581
20 <xsd:any minOccurs="0" maxOccurs="unbounded" 1582
21 namespace="##other" processContents="lax"/> 1583
22 </xsd:sequence> 1584
23 <xsd:attribute name="name" type="namePattern" 1585
24 use="required"/> 1586
25 </xsd:complexType> 1587
26 1588
27 <xsd:complexType name="deprecationType"> 1589
28 <xsd:sequence> 1590
29 <xsd:element name="deprecated-by" 1591
30 type="deprecatedInfoType" minOccurs="1" 1592
31 maxOccurs="unbounded" form="qualified"/> 1593
32 </xsd:sequence> 1594
33 <xsd:attribute name="date" type="xsd:dateTime" 1595
34 use="optional"/> 1596
35 </xsd:complexType> 1597
36 1598
37 <xsd:complexType name="provenanceRecordType"> 1599
38 <xsd:sequence> 1600
39 <xsd:element name="submitter" type="organizationType" 1601
40 minOccurs="1"/> 1602
41 <xsd:element name="authority" type="organizationType" 1603
42 minOccurs="1" maxOccurs="unbounded"/> 1604
43 <xsd:element name="change-description" 1605
44 type="changeDescriptionType" minOccurs="1" 1606
45 maxOccurs="unbounded"/> 1607
46 <xsd:any minOccurs="0" maxOccurs="unbounded" 1608
47 namespace="##other" processContents="lax"/> 1609
48 </xsd:sequence> 1610
49 </xsd:complexType> 1611
50 1612
51 <xsd:complexType name="changeDescriptionType"> 1613
52 <xsd:sequence> 1614
53 <xsd:element name="evidence-reference" 1615
54 type="evidenceReferenceType" minOccurs="0"/> 1616
55 <xsd:element name="comments" type="xsd:token" 1617
56 minOccurs="0"/> 1618
57 </xsd:sequence> 1619
58 <xsd:attribute name="change-type" type="changeTypeType" 1620
59 use="required"/> 1621

49

60 <xsd:attribute name="date" type="xsd:dateTime"/> 1622
61 </xsd:complexType> 1623
62 1624
63 <xsd:complexType name="evidenceReferenceType"> 1625
64 <xsd:simpleContent> 1626
65 <xsd:extension base="xsd:anyURI"> 1627
66 <xsd:attribute name="evidence" 1628
67 type="evidenceType" use="required"/> 1629
68 </xsd:extension> 1630
69 </xsd:simpleContent> 1631
70 </xsd:complexType> 1632
71 1633
72 <xsd:complexType name="organizationType"> 1634
73 <xsd:sequence> 1635
74 <xsd:element name="description" type="xsd:token" 1636
75 minOccurs="0"/> 1637
76 </xsd:sequence> 1638
77 <xsd:attribute name="system-id" type="xsd:anyURI" 1639
78 use="required"/> 1640
79 <xsd:attribute name="name" type="xsd:token" 1641
80 use="required"/> 1642
81 <xsd:attribute name="date" type="xsd:dateTime" 1643
82 use="required"/> 1644
83 </xsd:complexType> 1645
84 1646
85 <xsd:complexType name="deprecatedInfoType"> 1647
86 <xsd:attribute name="name" type="searchableCpeName" 1648
87 <xsd:attribute name="type" type="deprecationTypeType" 1649
88 use="required"> 1650
89 <xsd:annotation> 1651
90 <xsd:documentation xml:lang="en"> 1652
91 The type of deprecation associated with 1653
92 the deprecated-by element. The type 1654
93 chosen will drive name resolution. 1655
94 </xsd:documentation> 1656
95 </xsd:annotation> 1657
96 </xsd:attribute> 1658
97 </xsd:complexType> 1659
98 1660
99 <xsd:simpleType name="changeTypeType"> 1661
100 <xsd:restriction base="xsd:token"> 1662
101 <xsd:enumeration value="ORIGINAL_RECORD"/> 1663
102 <xsd:enumeration value="DEPRECATION"/> 1664
103 <xsd:enumeration value="DEPRECATION_MODIFICATION"/> 1665
104 </xsd:restriction> 1666
105 </xsd:simpleType> 1667
106 1668
107 <xsd:simpleType name="evidenceType"> 1669
108 <xsd:restriction base="xsd:token"> 1670
109 <xsd:enumeration value="CURATOR_UPDATE"/> 1671
110 <xsd:enumeration value="VENDOR_FIX"/> 1672

50

111 <xsd:enumeration value="THIRD_PARTY_FIX"/> 1673
112 </xsd:restriction> 1674
113 </xsd:simpleType> 1675
114 1676
115 <xsd:simpleType name="deprecationTypeType"> 1677
116 <xsd:restriction base="xsd:token"> 1678
117 <xsd:enumeration value="NAME_CORRECTION"/> 1679
118 <xsd:enumeration value="NAME_REMOVAL"/> 1680
119 <xsd:enumeration value="ADDITIONAL_INFORMATION"/> 1681
120 </xsd:restriction> 1682
121 </xsd:simpleType> 1683
122 1684
123 <!-- NOTE: Will need to change based on new CPE format --> 1685
124 <xsd:simpleType name="namePattern"> 1686
125 <xsd:annotation> 1687
126 <xsd:documentation xml:lang="en"> 1688
127 Pattern defining identifier WFN (no embedded *,?) 1689
128 </xsd:documentation> 1690
129 </xsd:annotation> 1691
130 <xsd:restriction base="xsd:anyURI"> 1692
131 <xsd:pattern value=""/> 1693
132 </xsd:restriction> 1694
133 </xsd:simpleType> 1695
134 1696
135 <!-- NOTE: Will need to change based on new CPE format --> 1697
136 <xsd:simpleType name="searchableCpeName"> 1698
137 <xsd:annotation> 1699
138 <xsd:documentation xml:lang="en"> 1700
139 Pattern defining format of expression WFNs (can 1701
140 contain *, ?) 1702
141 </xsd:documentation> 1703
142 </xsd:annotation> 1704
143 <xsd:restriction base="xsd:anyURI"> 1705
144 <xsd:pattern value=""/> 1706
145 </xsd:restriction> 1707
146 </xsd:simpleType> 1708
147 1709
148 </xsd:schema> 1710

Figure 10-9: CPE 2.3 Extension of 2.2 Schema 1711

 1712
1 <?xml version='1.0' encoding='UTF-8'?> 1713
2 <cpe-list xmlns="http://cpe.mitre.org/dictionary/2.0" 1714
3 xmlns:cpe23="http://scap.nist.gov/schema/cpe-extension/2.3" 1715
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1716
5 xsi:schemaLocation="http://cpe.mitre.org/dictionary/2.0 1717
6 http://cpe.mitre.org/files/cpe-dictionary_2.2.xsd 1718
7 http://scap.nist.gov/schema/cpe-extension/2.3 1719
8 cpe-extension_2.3.xsd"> 1720
9 1721
10 <generator> 1722

51

11 <product_name> 1723
12 National Vulnerability Database (NVD) 1724
13 </product_name> 1725
14 <product_version> 1726
15 3.0-SNAPSHOT (DEVELOPMENT) 1727
16 </product_version> 1728
17 <schema_version>2.2</schema_version> 1729
18 <timestamp>2010-05-27T23:40:00</timestamp> 1730
19 </generator> 1731
20 1732
21 <cpe-item name="cpe:/a:adobe:acrobat:3"> 1733
22 <title xml:lang="en-US">Adobe Acrobat</title> 1734
23 <cpe23:cpe23-item 1735
24 name="cpe23:a:adobe:acrobat:3:*:*:*:*:*:*:*"> 1736
25 <cpe23:provenance-record> 1737
26 <cpe23:submitter system- 1738
27 id="http://nvd.nist.gov" name="NVD" 1739
28 date="2006-05-04T18:13:51.0Z"/> 1740
29 <cpe23:authority system- 1741
30 id="http://nvd.nist.gov" name="NVD" 1742
31 date="2006-05-04T18:13:51.0Z"/> 1743
32 <cpe23:change-description 1744
33 change-type="ORIGINAL_RECORD" 1745
34 date="2006-05-04T18:13:51.0Z"> 1746
35 <cpe23:evidence-reference 1747
36 evidence="CURATOR_UPDATE"> 1748
37 http:/adobe.com/versionHistory 1749
38 </cpe23:evidence-reference> 1750
39 <cpe23:comments> 1751
40 Any comments relating to the 1752
41 evidence of why this was updated 1753
42 should go here. Also the 1754
43 description of the change should 1755
44 be explained. 1756
45 </cpe23:comments> 1757
46 </cpe23:change-description> 1758
47 <cpe23:change-description 1759
48 change-type="DEPRECATION" 1760
49 date="2007-05-04T18:13:51.0Z"> 1761
50 <cpe23:evidence-reference 1762
51 evidence="CURATOR_UPDATE"> 1763
52 http:/adobe.com/versionHistory 1764
53 </cpe23:evidence-reference> 1765
54 <cpe23:comments> 1766
55 This name was deprecated 1767
56 </cpe23:comments> 1768
57 </cpe23:change-description> 1769
58 </cpe23:provenance-record> 1770
59 <cpe23:deprecation date="2006-05-04T18:13:51.0Z"> 1771
60 <cpe23:deprecated-by name="cpe 1772
61 23:a:adobe:acrobat:3.0:*:*:*:*:*:*:*" 1773
62 type="NAME_CORRECTION"/> 1774

52

63 </cpe23:deprecation> 1775
64 </cpe23:cpe23-item> 1776
65 </cpe-item> 1777
66 1778
67 1779
68 <cpe-item name="cpe:/a:adobe:acrobat:3.0"> 1780
69 <title xml:lang="en-US">Adobe Acrobat 3.0</title> 1781
70 <cpe23:cpe23-item 1782
71 name="cpe23:a:adobe:acrobat:3.0:*:*:*:*:*:*:*"> 1783
72 <cpe23:provenance-record> 1784
73 <cpe23:submitter system-id="http://nvd.nist.gov" 1785
74 name="NVD" date="2007-05-04T18:13:51.0Z"/> 1786
75 <cpe23:authority system-id="http://nvd.nist.gov" 1787
76 name="NVD" date="2007-05-04T18:13:51.0Z"/> 1788
77 <cpe23:change-description 1789
78 change-type="ORIGINAL_RECORD" 1790
79 date="2007-05-04T18:13:51.0Z"> 1791
80 <cpe23:evidence-reference 1792
81 evidence="CURATOR_UPDATE"> 1793
82 http:/adobe.com/versionHistory 1794
83 </cpe23:evidence-reference> 1795
84 <cpe23:comments> 1796
85 deprecated previous with better 1797
86 name 1798
87 </cpe23:comments> 1799
88 </cpe23:change-description> 1800
89 </cpe23:provenance-record> 1801
90 </cpe23:cpe23-item> 1802
91 </cpe-item> 1803
92 </cpe-list> 1804

 Figure 10-10: Sample CPE 2.3 Dictionary Instance Data 1805

53

Appendix D—Change Log 1806

• Complete draft specification released to the CPE community for comment. 1808
Release 0 – 9 June 2010 1807

 1809

• Minor edits to audience description. 1811
Release 1 – 30 June 2010 1810

• Minor editorial changes throughout the document. 1812
• Removed all mention of and support for the logical value UNKNOWN. 1813
• Updated Dictionary Searching section to remove the notion of an Error result, and clarify on 1814

superset versus subset matches. 1815
• Updated deprecation logic, and data model to include three distinct types of deprecation. 1816

	Executive Summary
	1. Introduction
	1.1 Purpose and Scope
	1.2 Normative References
	1.3 Document Structure
	1.4 Document Conventions

	2. Terms, Definitions and Abbreviations
	2.1 Terms and Definitions
	2.1.1 Dictionary Contributor
	2.1.2 Dictionary Creator
	2.1.3 Dictionary Maintainer
	2.1.4 Dictionary Users
	2.1.5 CPE Specification Stack
	2.1.6 Extended CPE Dictionary
	2.1.7 Identification Strategy
	2.1.8 Identifier WFN
	2.1.9 Known Data
	2.1.10 Official CPE Dictionary
	2.1.11 Official Identifier WFN

	2.2 Abbreviated Terms

	3. Conformance
	3.1 Product Conformance
	3.2 Organization Conformance

	4. Relationship to Existing Standards
	4.1 Relationship to CPE Specification Stack
	4.2 Relationship to CPE v2.2

	5. Rules and Acceptance Criteria
	5.1 Acceptance Criteria
	5.1.1 Permitted Concepts and Special Characters
	5.1.1.1 NA Logical Value
	5.1.1.2 ANY Logical Value

	5.1.2 Restricted Concepts and Special Characters
	5.1.2.1 Asterisk
	5.1.2.2 Question-mark

	5.1.3 CPE Name Completeness - Required CPE Attributes
	5.1.4 CPE Name Uniqueness

	5.2 CPE Dictionary Deprecation Process
	5.2.1 Deprecation Types
	5.2.2 Performing Deprecation
	5.2.3 Use of Deprecated Names

	5.3 CPE Dictionary Provenance Data

	6. CPE Dictionary Searching
	6.1 Identifier Lookup
	6.2 Dictionary Searching

	7. Management Documents
	7.1 Dictionary Content Management and Decisions Document
	7.2 Dictionary Process Management Document

	8. Official and Extended Dictionaries
	8.1 Official CPE Dictionary
	8.2 Extended CPE Dictionaries

	9. Data Model Overview
	9.1 Mandatory Elements
	9.2 Optional Elements
	9.3 Extension Points

	10. Implementation and Binding
	10.1 CPE Dictionary Pseudo Code
	10.1.1 Operations on a CPE Dictionary
	10.1.1.1 Function get_cpe_items(d)
	10.1.1.2 Function get_cpe_item_WFN(item)
	10.1.1.3 Function get(w,a)
	10.1.1.4 Function is_deprecated(item)
	10.1.1.5 Function getItem(list, index)

	10.1.2 Acceptance Criteria Pseudo Code
	10.1.3 Dictionary Searching Pseudo Code

	10.2 CPE Dictionary Binding
	Appendix A— Use Cases
	Appendix B— Identification Strategies
	Appendix C— Valid CPE Dictionary Data Model Bindings
	Appendix D— Change Log

